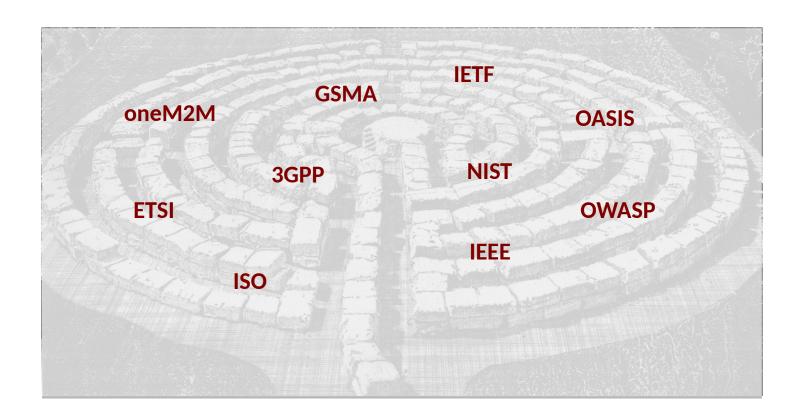
Internet of Things Security standards

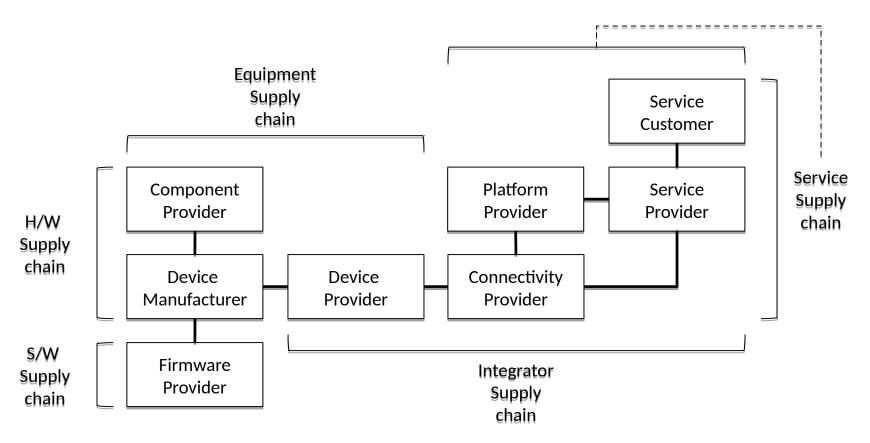


Vangelis Gazis (<u>vangelis.gazis@huawei.com</u>)

Chief Architect Security Internet of Things (IoT)

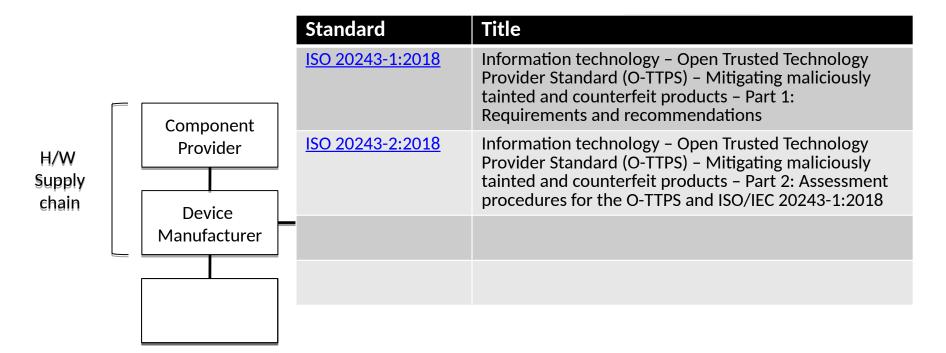
Security Solution Planning & Architecture Design (SPD)

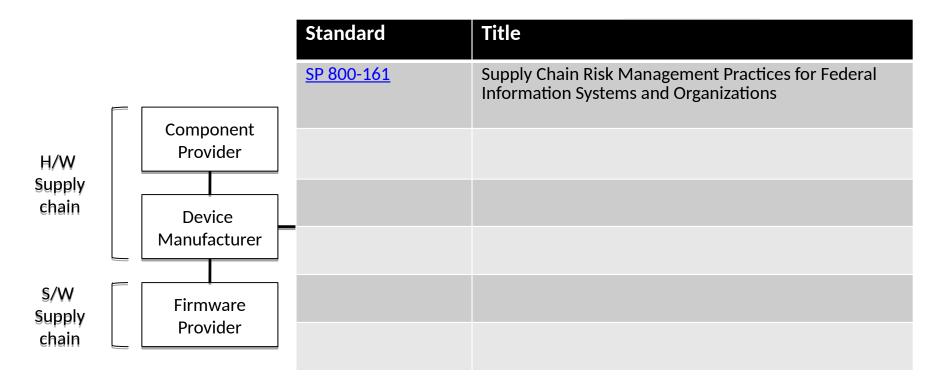
Security standards for IoT... where does one start?


Let's look at automotive (as an example)

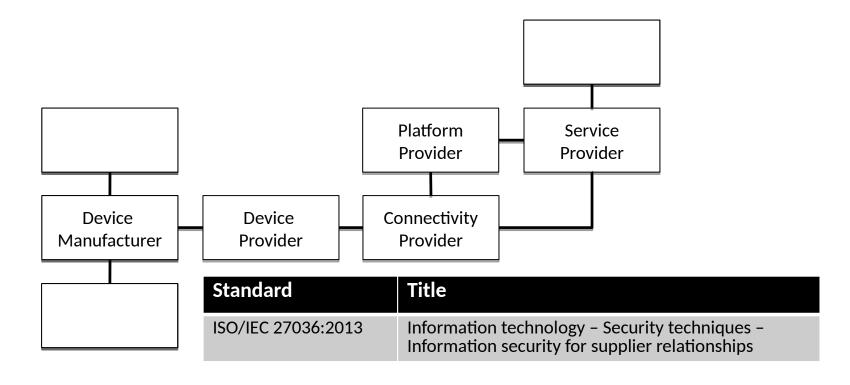
Study Groups		Standardization Bodies		Other Bodies	
ITU-T	SG 11	ISO	TC 22	GSMA	
	SG 13		TC 204	Standards Development	ATIS
	SG 16	ISO/IEC	JTC1/SC6		CCSA
	SG 20		JTC1/SC27		TIA
ITU-R	WP5A	SAE	Vehicle Cyber Security	Organizations	TTA
CITS - Collaboration on ITS Communication Standards		IEEE	802.11 WG		TTC
			1609 WG		
		ETSI	TC ITS	UNECE WP29 TF	CS
		W3C	Automotive WG	AGL - Automotiv	e Grade Linux

Standards in the risk ecosystem of IoT


The risk ecosystem of IoT


The risk ecosystem of IoT Security standards: ISO

The risk ecosystem of IoT Security standards: ISO


The risk ecosystem of IoT Security standards: NIST

The risk ecosystem of IoT Security standards: SEMI

The risk ecosystem of IoT Security standards: ISO

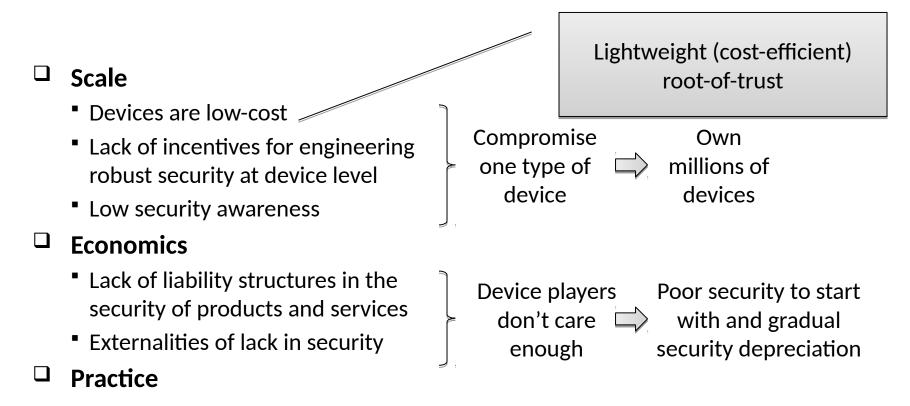
The risk ecosystem of IoT Security standards: ISO

Standard	Title
ISO/IEC 27036-1:2014	Information technology – Security techniques – Information security for supplier relationships – Part 1: Overview and concepts
ISO/IEC 27036-2:2014	Information technology – Security techniques – Information security for supplier relationships – Part 2: Requirements
ISO/IEC 27036-3:2013	Information technology – Security techniques – Information security for supplier relationships – Part 3: Guidelines for information and communication technology supply chain security
ISO/IEC 27036-4:2016	Information technology – Security techniques – Information security for supplier relationships – Part 4: Guidelines for security of cloud services

The risk ecosystem of IoT Framework standards

Standard	Title
ISO/IEC 21827:2008	Information technology – Security techniques – Systems Security Engineering – Capability Maturity Model (SSE-CMM)
ISO/IEC TR 15446:2009	Information technology – Security techniques – Guide for the production of Protection Profiles and Security Targets
ISO/IEC 29100:2011	Information technology – Security techniques – Privacy framework

Approaching cyber security in IoT Key observations


- Market lacks economic incentives for cyber security
 - Customers prioritize functional features over security ones
- Depreciation of security assurances given at product/service launch
 - New vulnerabilities are being discovered daily (discovery ≠ disclosure)
- ☐ The value chain may distribute the liabilities associated to cyber security assurances in a disproportionate manner
 - DDoS attacks launched by a globally distributed population of low-cost end-user devices (e.g. as in IoT) under the control of malicious actor bring no additional cost to the manufacturer of any of these devices
- □ Consumers of products and/or services often lack in security awareness

- □ Scale
 - Devices are low-cost
 - Lack of incentives for engineering robust security at device level
 - Low security awareness
- Economics
 - Lack of liability structures in the security of products and services
 - Externalities of lack in security
- □ Practice

Compromise Own one type of device devices

Device players don't care chough

Poor security to start with and gradual security depreciation

□ Scale

- Devices are low-cost
- Lack of incentives for engineering robust security at device level
- Low security awareness
- ☐ Economics
 - Lack of liability structures in the security of products and services
 - Externalities of lack in security
- □ Practice

Enablement of markets for DDoS mitigation

Compromise Own one type of device devices

Device players don't care chough

Poor security to start with and gradual security depreciation

Scale
 Devices are low-cost
 Lack of incentives for engineering robust security at device level
 Low security awareness
 Economics
 Lack of liability structures in the security of products and services

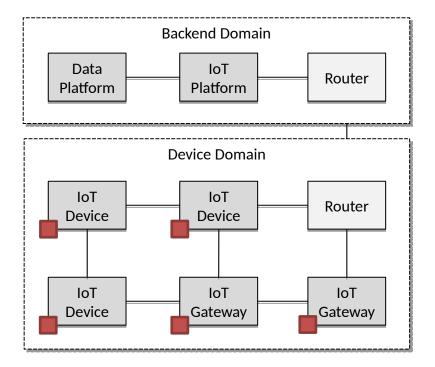
Externalities of lack in security

Practice

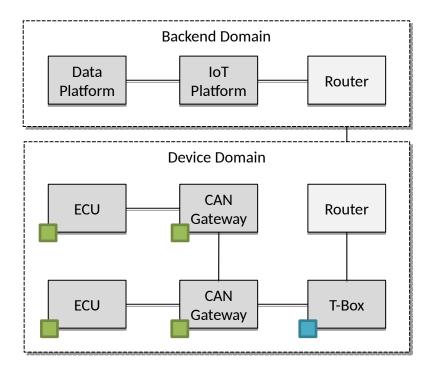
Standards for firmware and/or software updates Compromise Own millions of one type of device devices Device players Poor security to start don't care with and gradual security depreciation enough

Balancing stakeholders Scale incentives Devices are low-cost Compromise Own Lack of incentives for engineering one type of millions of robust security at device level device devices Low security awareness **Economics** Lack of liability structures in the Device players Poor security to start security of products and services don't care with and gradual Externalities of lack in security security depreciation enough **Practice**

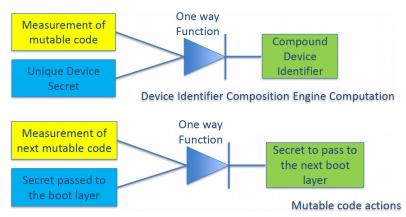
Scale **IETF DOTS** Devices are low-cost TCG DICE Compromise Own OASIS CTI Lack of incentives for engineering one type of millions of robust security at device level device devices Low security awareness **Economics** UNECE **IETF SUIT** Lack of liability structures in wp29 Device players Poor security to start security of products and services don't care with and gradual Externalities of lack in security enough security depreciation **Practice**

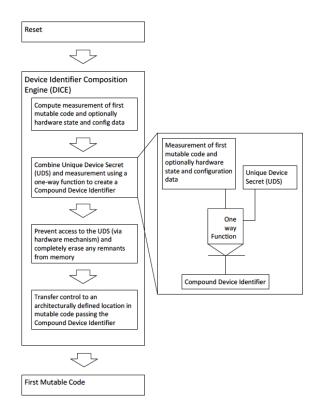

ENISA GSMA NIST OWASP CSA ISO/IEC

Standards for lightweight Root-of-Trust


Hardware Root-of-Trust (RoT)

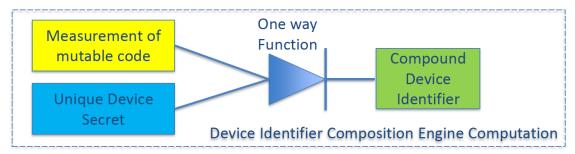
- ☐ General (TCG)
 - Trusted Platform Module (TPM)
- Lightweight (TCG)
 - <u>Device</u>
 <u>Identit</u> <u>Composition Engine (DICE)</u>




Hardware Root-of-Trust (RoT)

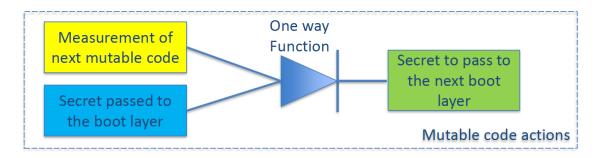
- ☐ General (TCG)
 - Trusted Platform Module (TPM)
- Lightweight (TCG)
 - <u>Device</u>
 <u>Identit</u> <u>Composition Engine (DICE)</u>
- □ Automotive (TCG)
 - TPM 2.0 Profile for Automotive Thing
 - TPM 2.0 Profile for Automotive Rich

- Compound Device Identifier (CDI)
 - Unique Device Secret (UDS)
 - Measurement of the first mutable code that runs on the platform



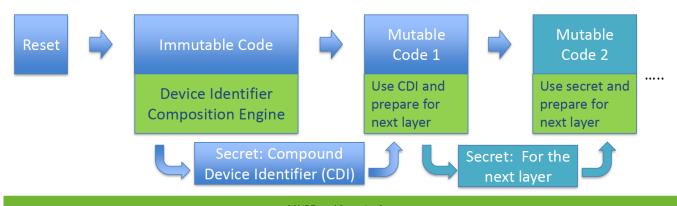
Generating the Compound Device Identifier

- Immutable code has access to the Unique Device Secret, but the mutable code does not
- Immutable code only passes the Compound Device Identifier to the first mutable code



©2017 Trusted Computing Group

Mutable Code Actions


- Each layer of mutable code receives a secret
- The secret can be used to prove the identity and software booted
- Secret is combined with a measurement of the next boot layer

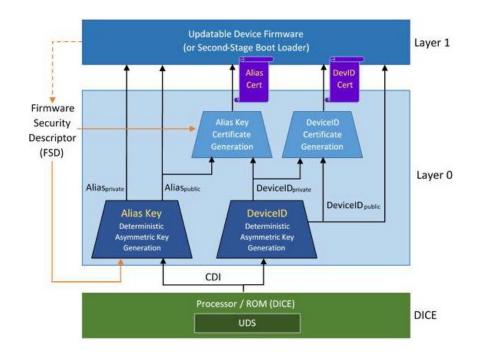
DICE Boot Flow Revisited

 The secret at each layer depends on the device identity and the code (including lower layers)

Proving device identity and integral state of software

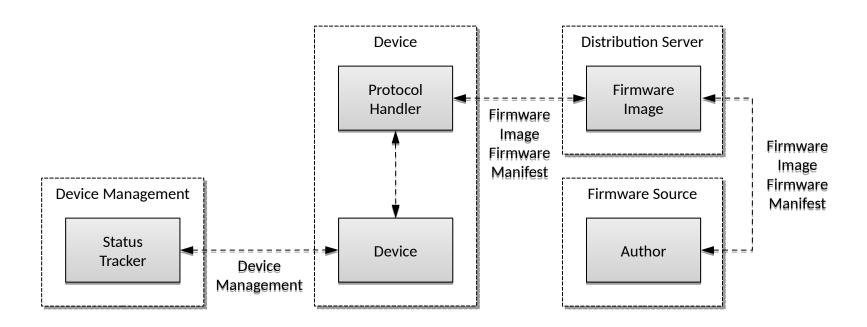
- Composite Device Identity (CDI) can be used with a Key Derivation Function (KDF) to produce an asymmetric key with (private, public) parts
- A change in the CDI and the derived asymmetric key means that there has been a change in the first mutable code
- The manufacturer can issue for the first layer of software a certificate for each device and include the public part of the asymmetric key
- The device proves its identity and its boot software when it performs a computation using the private part of the asymmetric key

- □ Proving software state for later in the boot process
 - The first layer of software has a certificate issued by the manufacturer
 - Each layer of software can use its private key and certificate to issue a certificate for the next layer of software
 - Each successive layer can repeat the process
 - The final certificate chain can be used in the establishment of TLS sessions and prove the device's identity and the integral state of its software

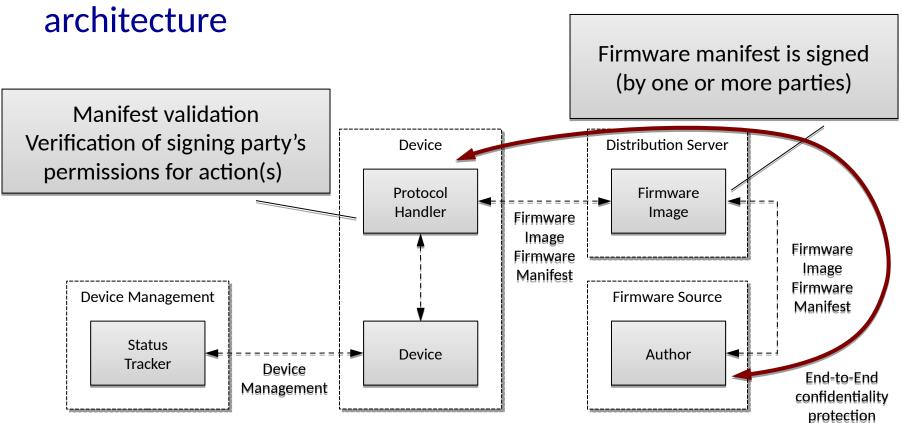

Chained Certificate issuance

- Requirements (non-exhaustive list)
 - Strength of the Composite Device Identifier (CDI) should be at least 256 bits
 - Update of the CDI requires a secure software update process (otherwise the CDI is immutable)
 - Protection offered by one-way function as in NIST SP800-57 Part 1
 - Any values that can be used to determine the Unique Device Secret (UDS) are erased before execution of the first mutable code (NIST SP800-88r1)
- Key enabler
 - Implicit identity-based device attestation

Implicit attestation


- First mutable code uses CDI to generate Device Identity (DI) asymmetric key pair
 - Can be done at manufacture time
 - Manufacturer may certify the public key of DI key pair
- DI is best kept secret (e.g. from L1)
- Device generates Alias asymmetric key whose public key is certified by DI key

Standards for firmware updates



IETF Software Updates for Internet of Things (SUIT) architecture

https://datatracker.ietf.org/wg/suit/about/

IETF Software Updates for Internet of Things (SUIT)

https://datatracker.ietf.org/wg/suit/about/

41

IETF Software Updates for Internet of Things (SUIT) requirements

- ☐ Old firmware
- Mismatched firmware
- Offline device and old firmware
- Target device misinterprets the type of payload
- Target device installs payload to wrong location
- Redirection

- Payload verification on boot
- Unauthorized updates
- Unexpected precursor images
- Unqualified firmware
- Reverse analysis of firmware images for vulnerability discovery
- Overriding critical manifest elements

https://datatracker.ietf.org/wg/suit/about/

IETF Software Updates for Internet of Things (SUIT) information model

Version identifier of the manifest **Processing steps** structure **Storage location** Monotonic sequence number **Component identifier Vendor ID condition URIs** Class ID condition Payload digest **Precursor image digest condition** Size **Required image version list Signature** Best-before timestamp condition **Directives Payload Format** Aliases

https://datatracker.ietf.org/wg/suit/about/

IETF Software Updates for Internet of Things (SUIT) information model

- Dependencies
- Content key distribution method
- XIP address

https://datatracker.ietf.org/wg/suit/about/

Balancing stakeholders incentives

IETF

Manufacturer Usage Description (MUD)

- ☐ The activity pattern of an IoT device is unlike a human one
 - An IoT device serves a single purpose or a small set of purposes
 - A loT device communicates to a few services.
 - O Local network services

DHCP

NTP

DNS

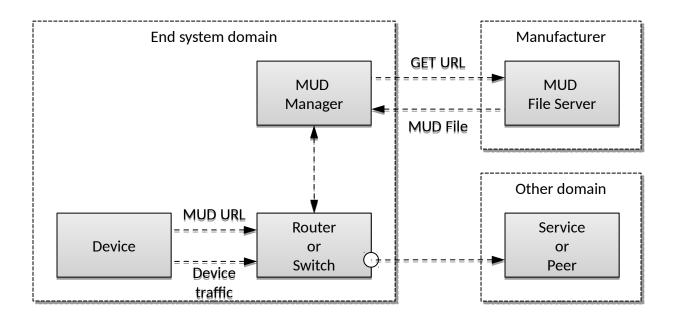
- Possibly services supporting its purpose (e.g. services accessible over the Web)
- An IoT device cannot be expected to protect itself (even if it does so today)
- ☐ The activity pattern of an IoT device is largely known to its manufacturer
 - Remedy can applied at the IoT device class level

IETF

Manufacturer Usage Description (MUD)

Assumptions

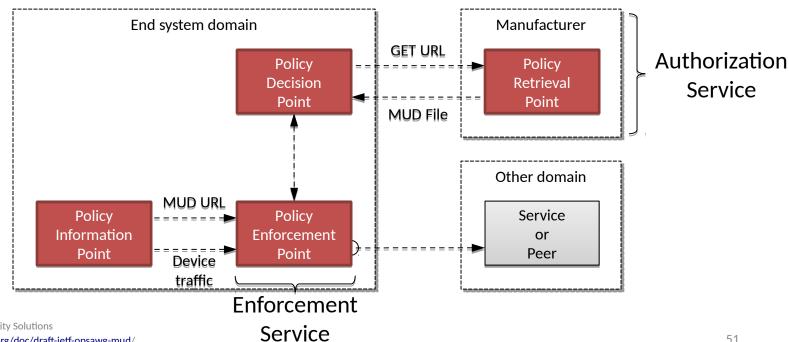
• The network is able to identify in some way the remote endpoints that a "thing" will talk to


Objective

 Provide a means for end devices to signal to the network what sort of access and network functionality they require to properly function (i.e. intended use)

Building blocks

- A URL that can be used to locate a description
- The description itself (including how it is interpreted)
- A means for local network management systems to retrieve the description


IETF Manufacturer Usage Description (MUD)

IETF

Manufacturer Usage Description (MUD)

Mapping MUD to the oneM2M authorization architecture

IETF

Manufacturer Usage Description (MUD)

```
module: ietf-mud
  +--rw mud!
     +--rw mud-version
                                  uint8
     +--rw mud-url
                                  inet:uri
     +--rw last-update
                                  yang:date-and-time
     +--rw mud-signature?
                                  inet:uri
     +--rw cache-validity?
                                  uint8
     +--rw is-supported
                                  boolean
     +--rw systeminfo?
                                  string
     +--rw mfq-name?
                                  string
     +--rw model-name?
                                  string
     +--rw firmware-rev?
                                  string
     +--rw software-rev?
                                  string
     +--rw documentation?
                                  inet:uri
     +--rw extensions*
                                  string
     +--rw from-device-policy
        +--rw acls
           +--rw access-list* [name]
                            -> /acl:acls/acl/name
              +--rw name
     +--rw to-device-policy
        +--rw acls
           +--rw access-list* [name]
                            -> /acl:acls/acl/name
              +--rw name
```

```
augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches:
  +--rw mud
    +--rw manufacturer?
                                inet:host
     +--rw same-manufacturer?
                                empty
    +--rw model?
                                inet:uri
    +--rw local-networks?
                                empty
    +--rw controller?
                                inet:uri
    +--rw my-controller?
                                empty
augment
  /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches
     /acl:l4/acl:tcp/acl:tcp:
  +--rw direction-initiated?
                               direction
```

IoT Security Recommendations and guidelines (non-exhaustive list)

- □ ENISA
 - Baseline security recommendations for IoT
 in the context of critical information infrastructures
- □ CSA
 - 13 steps to developing secure IoT products
- □ GSMA
 - IoT security guidelines for endpoint ecosystems
 - loT security guidelines for service ecosystems
 - loT security guidelines for network operators

IoT security ENISA baseline security recommendations for IoT

Policies	Organizational People Processes	Technic	al Measures
Security by design	End-of-life support	Trust and integrity management	Secure software/firmware update
Privacy by design	Proven solutions	Strong default security	Authentication
		Strong default privacy	Authorization
Asset management	Vulnerability management	Hardware security	Access control
Risk identification and assessment	Incident management	Data protection and compliance	Secure interfaces and network services
Threat identification and assessment	Security training and awareness	System safety and reliability	Secure and trusted communications
	3 rd party relationship	Secure handling of	Logging
	management	input/output data	Monitoring and auditing

IoT security CSA recommendations

Policies	Organizational People Processes	Technical Measures		
	Secure development methodology	Secure key management	Secure update capability	
	Secure development and		Authentication	
	integration environment		Authorization	
		Hardware security	Access control	
	Establish privacy protections	Data protection	Secure associated Applications and Services	
			Protect logical and API interfaces	
	Identify framework security		Logging	
	Identify platform security		Security reviews	

IoT security GSMA recommendations

Policies	Organizational People Processes Technical Measures		
	Sunset model	Manage cryptographic architecture	Network authentication services
		Server provisioning	System hardening
		Bootstrap method	Communications model
	Data breach policy	Root of Trust (RoT)	Update model
Set of security classifications	Incident response model Recovery model	Persistent storage model	Security infrastructure for exposed systems
	Communications privacy model	Input validation Output filtering	Define an application execution environment
	Authorization model	Service Trusted	Logging and monitoring
	Strong password policy Computing Base (TCB)		

Thank you.

Copyright©2018 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.

Annex

Cyber security standards for IoT IETF

- Security Automation and Continuous Monitoring (SACM)
 - Security Automation and Continuous Monitoring (SACM) Requirements
 - Security Automation and Continuous Monitoring (SACM) Architecture
 - The Data Model of Network Infrastructure Device Data Plane Security Baseline
 - The Data Model of Network Infrastructure Device Infrastructure Layer Security
 Baseline
 - The Data Model of Network Infrastructure Device Management Plane Security
 Baseline

Cyber security standards for IoT IETF

- ☐ Trusted Execution Environment Provisioning (TEEP)
 - Trusted Execution Environment Provisioning (TEEP) Architecture
 - The Open Trust Protocol (OTrP)
- Cyber Threat Intelligence (CTI)
 - RFC 4765 Intrusion Detection Message Exchange Format (IDMEF)
 - RFC 5070 Incident Object Description Exchange Format (IODEF)
 - RFC 5901 Extensions to the IODEF for Reporting Phishing
 - RFC 6545 Real-time Inter-network Defense (RID)

Cyber security standards for IoT ETSI

Technical Committee (TC) CYBER

- TR 103 306 Global Cyber Security Ecosystem
- TR 103 421 Network Gateway Cyber Defense
- TR 103 305-1 Critical Security Controls for Effective Cyber Defence; Part 1: The Cr itical Security

Controls

- TR 103 305-2 Critical Security Controls for Effective Cyber Defence; Part 2: Measu rement and
 Auditing
- TR 103 305-3 Critical Security Controls for Effective Cyber Defence; Part 3: Servic e Sector Implementations
- TR 103 305-4 Critical Security Controls for Effective Cyber Defence; Part 4: Facilitation Mechanisms

64

Cyber security standards for IoT ETSI

☐ Technical Committee (TC) CYBER

- TS 103 532 Attribute Based Encryption for Attribute Based Access Control
- TR 103 167 Threat Analysis and Countermeasures to M2M Service Layer
- TR 103 303 Protection Measures for ICT in the Context of Critical Infrastructures
- TR 103 331 Structured Threat Information Sharing
- TR 103 369 Design Requirements Ecosystem
- TS 103 460 Malicious Behavior Detection
- TR 103 370 Practical Introductory Guide to Privacy
- TR 103 533 Security Standards Landscape and Best Practices from Initiatives

Cyber security standards for IoT ETSI

- ☐ Intelligent Transport Systems (ITS)
 - TR 103 375 IoT Standards Landscape and Future Evolutions
 - TS 103 097 ITS Security; Security Headers and Certificate Formats
 - TS 102 940 ITS Security; ITS Communications Security Architecture and Security Management
 - TS 102 941 ITS Security; Trust and Privacy Management
 - TS 102 893 ITS Security; Threat Vulnerability and Risk Analysis (TVRA)
 - TS 102 723-8 OSI Cross-Layer Topics; Interface Between Security Entity and Network and Transport
 Layer

Cyber security standards for IoT ITU-T

- □ JCA-loT
 - Global online IoT standards roadmap
- ☐ ITU-T SG17
 - X.1362 Simple encryption procedure for IoT environments
 - X.1361 Security framework for IoT based on the gateway model
 - X.1373 Secure software update capability for ITS communication devices
 - X.secup-iot IoT Software Update Procedure (WiP)
 - X.ssp-iot Security requirements and framework for IoT service platform (WiP)
 - X.ibc-iot Security framework for use of identity-based cryptography in support of IoT services over telecom networks
 (WiP)

Cyber security standards for IoT ITU-T

- ☐ X.1500 Series for Structured Cyber Security Information Exchange (CYBEX) Techniques
 - X.1520 Common vulnerabilities and exposures (CVE)
 - X.1521 Common vulnerability scoring system (CVSS)
 - X.1524 Common weakness enumeration (CWE)
 - X.1525 Common weakness scoring system (CWSS)
 - X.1544 Common attack pattern enumeration and classification (CAPEC)

Security specifications

- 21.133 Security Threats and Requirements
- 33.187 Security aspects of Machine-Type Communications (MTC)
- 33.120 Security Principles and Objectives
- 33.310 Network Domain Security (NDS) Authentication Framework (AF)
- 33.102 3G Security Architecture
- 33.401 Security Architecture SAE
- 33.501 Security Architecture and Procedures for 5G System
- 33.163 Battery Efficient Security for Very Low Throughput Machine Type Communication (MTC) Devices (BEST)

Security specifications

- 33.220 Generic Bootstrapping Architecture (GBA)
- 33.221 Generic Bootstrapping Architecture (GBA) Support for Subscriber Certific ates (SSC
- 33.222 Generic Authentication Architecture (GAA); Access to network application functions using
 HTTPS
- 33.116 Security Assurance Specification (SCAS) for the MME network product class
- 33.117 Catalogue of general security assurance requirements
- 33.250 Security assurance specification for the PGW network product class

Security specifications

- 33.805 Security Assurance Methodology (SECAM) for 3GPP Nodes
- 33.855 Study on Security Aspects of SBA
- 33.821 Rationale and Track of Security Decisions in LTE RAN / 3GPP SAE
- 33.863 Study on battery efficient security for very low throughput Machine Type Communication (MTC)
 devices
- 33.885 Study on security aspects for LTE support of Vehicle-to-Everything (V2X) services
- 33.926 Security Assurance Specification (SCAS) threats and critical assets in 3GP P network product classes

□ Security specifications

- 33.905 Recommendations for Trusted Open Platforms
- 33.919 Generic Authentication Architecture (GAA)
- 33.889 Study on Security Aspects of Machine-Type Communications (MTC) Architecture and Feature
 - **Enhancements**
- 33.899 Study On The Security Aspects Of The Next Generation System

Status of Standards across Security Domains

Core Areas of Cybersecurity Standardization	Examples of Relevant SDOs	Connected Vehicles	Consumer IoT	Health IoT & Medical Devices	Smart Buildings	Smart Manufacturing
Cryptographic Techniques	ETSI; IEEE; ISO/IEC JTC 1; ISO TC 68; ISO	Standards Available	Standards Available	Some Standards	Standards Available	Some Standards Slow
	TC 307; W3C	Slow Uptake	Slow Uptake	Slow Uptake	Slow Uptake	Uptake
Cyber Incident Management	ETSI ; ISO/IEC JTC 1; ITU-T; PCI	Some Standards	Some Standards	Some Standards	Some Standards	Some Standards Slow
		Slow Uptake	Slow Uptake	Slow Uptake	Slow Uptake	Uptake
Identity and Access Management	ETSI; FIDO Alliance; IETF; OASIS; OIDF;	Standards Available	Standards Available	Some Standards	Standards Available	Standards Available
	ISO/IEC JTC 1; ITU-T; W3C	Slow Uptake	Slow Uptake	Slow Uptake	Slow Uptake	Slow Uptake

Status of Standards across Security Domains

Information Security	ATIS; IEC; ISA; ISO/IEC JTC 1;	Some Standards	Some Standards	Some Standards	Some Standards	Some Standards
Management Systems	ISO/IEC 31C 1, ISO TC 223;	Standards	Standards	Standards	Standards	Slow
	OASIS;	Slow	Slow	Slow	Slow	Uptake
	The Open Group	Uptake	Uptake	Uptake	Uptake	
IT System Security	ISO/IEC JTC 1;	Standards	Standards	Standards	Standards	Standards
Evaluation	The Open Group; UL	Needed	Needed	Needed	Needed	Needed
		Not	Not	Not	Not	Not
		Implemented	Implemented	Implemented	Implemented	Implemented
Hardware Assurance	ISO/IEC JTC 1;	Some	Some	Some	Some	Some Standards
	SAE International	Standards	Standards	Standards	Standards	
						Not
		Slow	Not	Slow	Not	Implemented
		Uptake	Implemented	Uptake	Implemented	

Status of Standards across Security Domains

Network Security	3GPP; 3GPP2; IEC; IETF; IEEE; ISO/IEC JTC 1;	Standards Needed	Standards Needed	Standards Needed	Standards Needed	Standards Needed
	ITU-T; The Open	Not	Not	Not	Not	Not
	Group; WiMAX	Implemented	Implemented	Implemented	Implemented	Implemented
	Forum					
Security Automation &	IEEE; IETF;	Some	Some	Some	Some	Some Standards
Continuous Monitoring	ISO/IEC JTC 1;	Standards	Standards	Standards	Standards	
	TCG;					Slow
	The Open Group	Slow	Slow	Slow	Slow	Uptake
		Uptake	Uptake	Uptake	Uptake	
Software Assurance	IEEE; ISO/IEC	Some	Some	Some	Some	Some Standards
	JTC 1; OMG;	Standards	Standards	Standards	Standards	
	TCG;					Slow
	The Open Group;	Slow	Slow	Slow	Slow	Uptake
	UL	Uptake	Uptake	Uptake	Uptake	•
Supply Chain Risk	IEEE; ISO/IEC	Some	Some	Some	Some	Some Standards
Management	JTC 1;	Standards	Standards	Standards	Standards	
	IEC TC 65;					Slow
	The Open Group;	Slow	Slow	Slow	Slow	Uptake
	UL	Uptake	Uptake	Uptake	Uptake	

Status of Standards across Security Domains Lightweight cryptography

Standard	Description
ISO/IEC 29192-1:2012	Information technology – Security techniques – Lightweight cryptography – Part 1: General
ISO/IEC 29192-2:2012	Information technology – Security techniques – Lightweight cryptography – Part 2: Block ciphers
ISO/IEC 29192-3:2012	Information technology – Security techniques – Lightweight cryptography – Part 3: Stream ciphers

Status of Standards across Security Domains Lightweight cryptography

Standard	Description
ISO/IEC 29192-4:2013	Information technology – Security techniques – Lightweight cryptography – Part 4: Mechanisms using asymmetric techniques
ISO/IEC 29192-4:201 Amd.1: (2016)	Information technology – Security techniques – Lightweight cryptography – Part 4: Mechanisms using asymmetric techniques
ISO/IEC 29192-5:2016	Information technology – Security techniques – Lightweight cryptography – Part 5: Hash-functions

Status of Standards across Security Domains Incident management

Standard	Description
ISO/IEC 27035-1:2016	Information technology – Security techniques – Information security incident management – Part 1: Principles of incident management
ISO/IEC 27035-2:2016	Information technology – Security techniques – Information security incident management – Part 2: Guidelines to plan and prepare for incident response
ISO/IEC PDTS 27035-3	Information technology – Security techniques – Information security incident management – Part 3: Guidelines for incident response operations
ITU-T X.1056	Security incident management guidelines for telecommunications organizations

Status of Standards across Security Domains Incident management

Standard	Description
RFC 4765	Intrusion Detection Message Exchange Format (IDMEF)
RFC 5070	Incident Object Description Exchange Format (IODEF)
RFC 5901	Extensions to the IODEF for Reporting Phishing
RFC 6545	Real-time Inter-network Defense (RID)
OASIS STIX 2.0	Structured Threat Information Expression (STIX) V2.0
OASIS TAXII 2.0	Trusted Automated Exchange of Indicator Information (TAXII) V2.0
OASIS OpenC2	Machine to machine exchange of commands to achieve investigative, remediation and/or mitigation effects