Bridging 1st PQC-functions and principles with the smart card world

Thomas Pöppelmann – NIS Summer School 2018 - 24.09.2018

Agenda

Agenda

Cryptography in everyday life

Cryptography is used everyday for various purposes

- > Writing an Instant Message
- > Ordering at an online retailer
- > Placing online stock orders at a bank
- Communication between a lawyer and his/her client
- > Transfer of critical business information

The quantum computer world

The world with quantum computers

- Quantum computers use quantum mechanical effects for computation
- Different from classical computers: quantum bits (qubits), quantum gates, new programming model
- Universal quantum computers expected in 15-20 years
 - > 2016: 5-qubit computer by IBM
 - > 2017: IBM announces a 50-qubit computer
 - > 2018: Preview of 72-qubit computer Bristlecone by Google

Possible applications of quantum computers

- Optimization problems
- > Quantum chemistry
- > Cryptanalysis

The threat of quantum computers to cryptography

Quantum cryptanalysis on a universal quantum computer

Currently used **asymmetric** cryptosystems (RSA/ECC) breakable by using **Shor's algorithm**

- > Classical world (currently): ECC-256 has 128-bit of security
- > Quantum world (in 15-20 years): ECC-256 has almost 0-bit of security

Bit-security level for symmetric cryptography is halved by Grover's algorithm

- > Classical world (currently): AES-128 has 128-bit of security
- > Quantum world (in 15-20 years): AES-128 has only 64 to 80 bits of security

The threat of quantum computers to cryptography (II / II)

Consequences of Shor's and Grover's algorithm

- RSA and ECC are the basis for <u>secured key exchange and secured digital identities</u> and <u>no</u> <u>immediate standardized alternatives are available</u>
- > For symmetric cryptography, alternatives are available today (e.g. AES-256)

Post-quantum cryptography and quantum cryptography

Post-Quantum Cryptography and Quantum Cryptography are not the same

Post-Quantum Cryptography

- New conventional cryptography deployable without quantum computers
- Believed to provide security against classical and quantum computer attacks
- Main research field are asymmetric algorithms to replace RSA/ECC

Quantum Cryptography

- Mainly Quantum Key Distribution (QKD) to secure communication using quantum mechanics
- Security relies on quantum mechanics not computational assumption
- Physical requirements like fiber-optical cable

As the leading provider of security solutions, Infineon is actively pursuing intensive research on **post-quantum cryptography**

Summary of PQC

Post-quantum crypto: The families

Five popular families known to build post-quantum asymmetric cryptography

	Family (assumption)		Encryption or Key Exchange	Description		
Cloud	Hash-based	x	-	 Based on security of symmetric hash function; number of signatures limited per public/private key for stateful schemes 		
	Multivariate Quadratic-based	х	_ (*)	 Based on multivariate polynomial equations; large public keys (27.9 kBytes to 75 kBytes); some schemes broken 		
	Code-based	_ (*)	×	 Old (1978) and trusted but large public- keys; less trust in more efficient variants (e.g., QC-MDPC) 		
	Lattice-based	х	x	 Old proposals (NTRU in 1996) and newer ones (LWE/RLWE); good performance and reasonable sizes for key/signature/ciphertext (~1-4 kBytes) 		
	Isogeny-based	_ (*)	х	 Related to ECC (reuse); slow but small ciphertexts/keys; relatively new field of research 		

(Family/assumption: RSA = factorization assumption; ECC = discrete logarithm assumption)

(*) Proposals may exist but they are currently not considered competitive

The NSA's view and the quantum landscape

NSA Announcement

The NSA Information Assurance Directorate (IAD) announced on 19 August 2015 that a transition to post-quantum cryptography is upcoming for US governmental computer systems:

"<u>IAD will initiate a transition to quantum resistant algorithms</u> in the not too distant future. Based on experience in deploying Suite B, we have determined to start planning and communicating early about the upcoming transition to quantum resistant algorithms."

- > EU has announced a one billion euro flagship project [1]
- 7000 researchers and 1.5 billion euro funding for quantum technology research in 2015 according to [2]
- NIST got 69 submissions for quantum resistant crypto standardization process
- > ETSI is running a quantum safe crypto (QSC) group
- H2020 projects on quantum safe crypto (SAFEcrypto, PQCRYPTO, and now also FutureTPM)

IAD: <u>https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm</u>

[1] <u>https://ec.europa.eu/digital-single-market/en/news/european-commission-will-launch-eu1-billion-quantum-technologies-flagship</u> [2] http://acit.committees.comsoc.org/files/2017/05/Industry-perspectives-of-Ouantum-Technologies.pdf

Agenda

Applications of post-quantum cryptography

Challenges for real world deployment of PQC

- Cryptanalysis of existing PQ schemes
 - Crypto needs the "test of time"
 - Parameter selection and optimization
 - Search for quantum algorithms to break PQC or accelerate PQC cryptanalysis
- Implementation research
 - Performance optimization (e.g., usage of special instructions)
 - Secured implementation of PQC on various platforms with limited resources
 - Feedback to cryptographers and standardization bodies
- Integration into applications
 - How can PQC replace RSA or ECC in a cost efficient manner in large scale infrastructure
 - Do we have to change the applications?
 - Introduction of crypto agility

Google's experiment: New Hope (lattice-based PQC) in Chrome

Paper by Erdem Alkim (RU Nijmegen), Léo Ducas (CWI Amsterdam), Thomas Pöppelmann (IFX), Peter Schwabe (RU Nijmegen) at USENIX Security'16

Key-exchange scheme based on ideal lattices with approx. 256-bit security

Diffie-Hellman-like protocol to protect confidentiality of session keys

Announcement of the experiment (June 2016)

"Today (June 2016) we're announcing an experiment in Chrome where a small fraction of connections between desktop Chrome and Google's servers will use a post-quantum key-exchange algorithm in addition to the elliptic-curve keyexchange algorithm that would typically be used."

Google

"Post-quantum key exchange – a new

hope"

Results of the experiment (December 2016)

"We did not find any unexpected impediment to deploying something like NewHope. There were no reported problems caused by enabling it... It's likely that TLS will want a post-quantum keyagreement in the future but a more multilateral approach is preferable for something intended to be more than an experiment."

Google is working to safeguard Chrome from quantum computers The Verge - 0.70 2016 But Google says New Hope — developed by researchers Erdem Alkim, ... of post-quantum Key-exchange software it looked into last year. Google Testing Post-Quantum Cryptography in Chrome

Threatpost - 08.07.2016 Google is already fighting hackers from the future with post-guantum

Mashable - 08.07.2016

Google is experimenting with post-quantum cryptography ZDNet - 07.07.2016

Google Chrome tests future of encryption with post-quantum crypto InfoWorld - 08.07.2016

New Hope + ECDH

🖹 Elements Console	Sources Network Time	line Profiles	Application	Security	Audits
D Overview	Https://play.google.com View requests in Network Panel				
Main Origin	formula:				
https://play.google.com	connection				
6	Protocol	TLS 1.2			
Secure Origins	Key Exchange CECPQ1_ECDSA				
https://www.gstatic.com	Cipher Suite	AES_256_GCM			
https://lh3.googleuserconte					
https://lh4.googleuserconte	Certificate				
https://lh5.googleuserconte					
https://lh6.googleuserconte	Subject	*.google.com			
https://lh3.ggpht.com	SAN	.google.com			
https://lh4.ggpht.com		*.android.com			
https://lh5.ggpht.com		Show more (52	total)		
https://books.google.com	Thu, 23 Jun 2016 08:33:56 GMT				
 https://ajax.googleapis.com 	Thu, 15 Sep 2016 08:31:00 GMT				
 https://www.google.com 	Google Internet Authority G2				
 nups//www.google-analyti * 					

Examples of implementations

Post-quantum key exchange – a new hope (Alkim, Ducas, Pöppelmann and Schwabe)

	New Hope key exchange on	Operation	Reference	Optimized		
	Intel CPUS	Key generation (server)	0.128 ms	<u>0.044 ms</u>		
p5	 Reference C implementation and optimized assembly implementation 	Key gen + shared key (client)	0.192 ms	<u>0.056 ms</u>		
	> Transmits roughly 2000	Shared key (server)	0.043 ms	<u>0.0095 ms</u>		
	bytes in each direction	Assuming a CPU @ 2 GHz (0.056 ms => 17800 executions/s) Exemplary EC Diffie-Hellman (ECDH) implementation is 0.075 ms				

A new hope on ARM Cortex-M (Alkim, Jakubeit and Schwabe)

New Hope on a constrained		Operation	Cortex-M4		
device		Key generation (server)	9.6 ms		
 Cortex-M is popular in IoT applications 		Key gen + shared key (client)	14.8 ms		
 Fast without hardware accelerator 		Shared key (server)	1.79 ms		
	Micro Exen	ocontroller @ 100 MHz (14.8 ms => 67 executions/s) nplary EC Diffie-Hellman (ECDH) implementation is 16 m			

The NIST process

NIST: http://csrc.nist.gov/groups/ST/post-quantum-crypto/

Agenda

Smart Cards and Embedded Security

Smart Cards and Embedded Security

Smart card or embedded secure element

- Low-power device sometimes supporting contactless operation used for payment, identification, or embedded security (e.g. TPM)
- Security features (Dual CPU, Error Detection, Alarm Systems) and hardware accelerator for cryptographic operations (e.g., RSA or AES)
- Protects secret key or other information against physical attacks (e.g. power analysis, micro-probing, laser fault injection)

Implementations of PQC needed that aim for secured operation on power and resource constrained device

Demonstrator of post-quantum cryptography

Demonstrator of post-quantum cryptography on a smart card chip

Inmeon's contactiess smart card

Infineon succeeded to implement New Hope on an Infineon contactless smart card microcontroller

- > This chip family is used in many high-security applications like passports
- The New Hope key exchange protects the communication between the smart card and the reader

infineon

infineon

Post-quantum cryptography is possible on smart cards

Latest research: Protection against differential power analysis (DPA) side-channel attacks

Protecting lattice-based PQC against power analysis attacks [OSPG18]

Implementation results Masked lattice-based public-key	Operation	Cycles on Cortex-M4	Time @100 MHz
encryption scheme on a Cortex M4 (similar to NewHope)	Key generation	2.669.559	26 ms
 Chosen Ciphertext Attack (CCA) conversion to protect against ciphertext malleability 	Encryption	4.176.684	42 ms
	Decryption (masked)	25.334.493	253 ms
 Security proof in the probing model to counter basic side- channel attacks 	NIST P-256 elliptic cur add factor 1.5; From S Countermeasures on a Rust); for countermeasures e Channel ', Samotyja and Lemke-	

Side-channel protection for real-world usage adds a significant performance overhead

- > "textbook" CPA-secured decryption:
- CCA-secured decryption:
- > CCA-secured and masked decryption:
- 163.887 cycles (baseline) 4.416.918 cycles (factor ~27) 25.334.493 cycles (factor ~155)

[OSPG18] Oder, Schneider, Pöppelmann, Güneysu: Practical CCA2-Secure and Masked Ring-LWE Implementation. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1): 142-174 (2018)

Latest research: Usage of RSA co-processors for PQC

Enabling the transition towards PQC with existing co-processors [AHHPVW18]

- Implementation of Kyber post-quantum key encapsulation mechanism (KEM) on Infineon SLE78 smart card with 16 Kbyte RAM
- Use RSA co-processor to speed-up lattice-based cryptography
 - Convert polynomials used in lattice-based cryptography to big integers
 - Process big integers on RSA co-processor (big integer multiplier)
 - Convert back to polynomial representation
- CCA-secured Kyber768
 - Key generation in 79.6 ms
 - Encapsulation in 102.4 ms
 - Decapsulation in 132.7 ms

Kronecker substitution

Polynomial multiplication $(3 x + 5) \cdot (2 x + 8) =$ $6 x^2 + 34 x + 40$ Integer multiplication: 305 * 208 = 6 34 40

[AHHPVW18] Martin R. Albrecht, Christian Hanser, Andrea Höller, Thomas Pöppelmann, Fernando Virdia, Andreas Wallner: Learning with Errors on RSA Co-Processors. IACR Cryptology ePrint Archive 2018: 425 (2018)

Agenda

Conclusion and call to action

Post-quantum cryptography is needed to secure a quantum computer world

A quantum computer world will probably have:

- More cryptographic standards
- Different schemes for encryption, signatures, and key exchange
- > Larger keys, signatures and ciphertexts

We have to prepare our systems for the upcoming transition to quantum-safe cryptography and for cryptographic agility in general

Thank you!

Thank you for your attention! Any questions?

http://www.infineon.com/pqc pqc@infineon.com

Part of your life. Part of tomorrow.

