
Lattice Cryptography
in the

NIST Standardization Process

Vadim Lyubashevsky

IBM Research – Zurich

Hard Problem Intuition

2

A y z

Given (A,z), find y

Easy! Just invert A and multiply by z

Hard Problem Intuition

3

A ey z

Small coefficients

Given (A,z), find (y,e)

Seems hard.

Hard Problem Intuition
(Learning With Errors)

4

Small coefficients to enforce uniqueness

Given (A,z), find (y,e)

Seems hard.

Why is this “Lattice” Crypto?

Connection to Lattices

• Solving a Lattice-Problem Breaking
Cryptosystems

• Breaking Cryptosystems Solving a Lattice
Problem in all lattices
 Worst-Case to Average-Case Reduction [Ajt ‘96, Reg ‘05,

etc.]

 Asymptotically, the design of lattice-based schemes is
sound

Lattice-Based Encryption

[HPS ’98]
NTRU Cryptosystem

over Z[x]/(xn-1)

[Ajt ’96, AD ‘97]
Basic CRH and

Cryptosystem over Z

[Reg ’05]
Learning with Errors
Cryptosystem over Z

[Mic ’02, LM ‘06, PR ‘06]
Basic Constructions

over Z[x]/(f(x))

[LPR ‘10]
Ring-LWE and

Practical Cryptosystem
over Z[x]/(f(x))

NewHope, Kyber,
Round2, Saber, etc …

Efficient Inefficient

Frodo, Lizard, etc.
NTRUPrime, NTRU-
Encrypt, NTRU-HSS,

etc.

Encryption Scheme
Overview

Key Exchange / CCA – Encryption/
Authenticated Key Exchange

CPA-Secure PKE

CCA-Secure KEM

CCA-Secure PKE Key Exchange
Authenticated Key

Exchange

All “black-box”
transformations

Encryption from LWE

Encryption Scheme

A s t=+ A t

r

+

u v
=Public Key

A is random – can be

created as H(seed)

Small

Coeffs.

Zq
n x n

0 m

+

Small

Coeffs.

Encryption Scheme

Is pseudo-random based on the hardness

of the Learning with Errors Problem

A s t=+ A t

r

+

u v
=

0 m

+

Encryption Scheme

v

A s +

r +

A s

r

A s

r +

A s

=

=

+ m

+ m

A s t=+ A t

r

+

u v
=

0 m

+

Encryption Scheme

u

s A

r

s
= +

A

r

s

+= ≈ v - m

A s t=+ A t

r

+

u v
=

0 m

+

u

s

v - =

Encryption Scheme

+ m

represent 0 by m=0
represent 1 by m=(q-1)/2

A s t=+ A t

r

+

u v
=

0 m

+

Encrypts only 1 bit – large ciphertext expansion
1 bit requires n elements in Zq

Encrypting More Bits

A S T=+ A T
R

+

U V

=

0 M

+

k

k

Encrypting k2 bits requires nk elements in Zq

i.e. n/k elements in Zq per bit

[HPS ’98]
NTRU Cryptosystem

over Z[x]/(xn-1)

[Ajt ’96, AD ‘97]
Basic CRH and

Cryptosystem over Z

[Reg ’05]
Learning with Errors
Cryptosystem over Z

[Mic ’02, LM ‘06, PR ‘06]
Basic Constructions

over Z[x]/(f(x))

[LPR ‘10]
Ring-LWE and

Practical Cryptosystem
over Z[x]/(f(x))

NewHope, Kyber,
Round2, Saber, etc …

Efficient Inefficient

Frodo, Lizard, etc.
PK, ciphertext ~ 10KB

NTRUPrime, NTRU-
Encrypt, NTRU-HSS,

etc.

Encryption Scheme
Overview

Encryption from
(polynomial / ring /

generalized / module)-LWE

Hard Problem Intuition
(Generalized / Ring / Module-LWE)

19

Use Polynomial Rings Instead of Integers

Example Ring Z17[x]/(x4+1)

20

Elements are z(x)=z3x3+z2x2+z1x+z0

where zi are integers mod 17

Addition is the usual coordinate-wise addition

Multiplication is the usual polynomial multiplication

followed by reduction modulo x4+1

Example Ring Z17[x]/(x4+1)

21

(X3 - 2X - 1)(-3X2 + 6) = (-3X5 + 12X3 +3X2 -12X - 6)

= (3X + 12X3 + 3X2 -12X - 6)

= (-5X3 +3X2 +8X -6)

Important: Reductions modulo X4+1 do not increase
the coefficients!

(For some moduli, there could be an exponential
increase – these are not useful for crypto).

u

s

v - =

Encrypting More Bits

+ m

A s t=+ A t

r

+

u v
=

0 m

+

Instead of 1 element in Z, make it 1 element in
Z[X]/(Xd+1)

i.e. work over R=Zq[X]/(Xd+1) instead of Zq

An encryption of d integers.

A s At
r

t
0 0 0

m

u v

=+

+

=

+

v u
s

m- = +

Rq
3 x 3

Encryption Scheme Over

Polynomial Rings

Operations in CRYSTALS
(our lattice suite submission to NIST)

Basic Computational Domain:

Polynomial ring Zp[x]/(x256+1)

Operations used in the schemes: and in the ring:

small coefficients

Operations in CRYSTALS

Only two main operations needed (and both are very
fast):

1. Evaluations of SHAKE (can use another XOF too)

2. Add / multiply in the polynomial ring Zp[X]/(X256+1)
• p = 213 – 29 + 1 (for KEM / Encryption Kyber)

• p = 223 – 213 + 1 (for Signature Dilithium)

To increase security, just do more of the same operations

The exact same hardware/software can be reused

25

Modular security

768-dim

1024-dim

to increase the security margin

[HPS ’98]
NTRU Cryptosystem

over Z[x]/(xn-1)

[Ajt ’96, AD ‘97]
Basic CRH and

Cryptosystem over Z

[Reg ’05]
Learning with Errors
Cryptosystem over Z

[Mic ’02, LM ‘06, PR ‘06]
Basic Constructions

over Z[x]/(f(x))

[LPR ‘10]
Ring-LWE and

Practical Cryptosystem
over Z[x]/(f(x))

Kyber, Round2, Saber,
etc.

PK, ciphertext ~ 1KB

Efficient Inefficient

Frodo, Lizard, etc.
PK, ciphertext ~ 10KB

NTRUPrime, NTRU-
Encrypt, NTRU-HRSS,

etc.

Encryption Scheme
Overview

NTRU Encryption

NTRU Cryptosystem

f

g
a a r + + mu 2==

“looks” random If a is random, then pseudorandom
based on Ring-LWE

f g Small secret keys

u g r + + m2 f g g=

mod p mod p

u g mod 2 = mg

u g mod 2
=

g
m

Comparison
(they’re virtually the same)

A t a=f/g

H(seed)

• t and a have the same size. But A=H(seed) needs to be re-generated
• Cannot efficiently make the NTRU public key consist of more polynomials
• f/g may be costlier to compute – makes a difference in ephemeral key exchange

u v u

The u have the same size. Only the high-order bits of v need to be transmitted.

[HPS ’98]
NTRU Cryptosystem

over Z[x]/(xn-1)

[Ajt ’96, AD ‘97]
Basic CRH and

Cryptosystem over Z

[Reg ’05]
Learning with Errors
Cryptosystem over Z

[Mic ’02, LM ‘06, PR ‘06]
Basic Constructions

over Z[x]/(f(x))

[LPR ‘10]
Ring-LWE and

Practical Cryptosystem
over Z[x]/(f(x))

Kyber, Round2, Saber,
etc.

PK, ciphertext ~ 1KB

Efficient Inefficient

Frodo, Lizard, etc.
PK, ciphertext ~ 10KB

NTRUPrime, NTRU-
Encrypt, NTRU-HRSS
PK, ciphertext ~ 1KB

Encryption Scheme
Overview

Small Variations

Schemes made slightly more efficient by more
“aggressive” constructions

• e.g. using secret / noise coefficients in a smaller range

• Instead of adding noise, doing rounding (chopping off
bits)

Unclear if there is any security penalty

Analogous to saying:

“I made SHA-3 more efficient by changing the
compression function from 24 to 20 rounds”

Digital Signatures

[Lyu ‘09]
“Fiat-Shamir with Aborts”

Digital Signature

[GLP ‘12]
[BG ‘14], TESLA

Signature Compression

Dilithium
Public Key + Signature

Compression

[HHPSW ‘03]
Use NTRU trapdoor for

Signatures

[GPV ‘08]
Made it Secure via
Gaussian Sampling

[DP ‘16] Made it Efficient

FALCON
BLISS [DDLL ‘13]

Bimodal Gaussian
Sampling

[Lyu ‘12]
Gaussian Rejection

Sampling
SIS + LWE Based

Based on NTRU
Uses Discrete Gaussian Sampling

Based on (Module-) LWE / SIS
Uses Uniform Sampling

Additionally useful for IBE Additionally useful for ZK-Proofs

Signature Size

Digital Signature
Overview

(All are Zero-Knowledge in the QROM)

“Fiat-Shamir with Aborts”
[Lyu ‘09] … [BG ‘14]

Public / Secret Keys

Public key
A:=XOF(seed)

uniform mod p

Public key
t:=As1+s2

Secret key
s1, s2 with

small coefficients

As1+s2=t

Sign(μ)

y Coefficients in [-γ, γ]
c := H(high(Ay), μ)
z := y + cs1

If |z| > γ – β or |low(Ay - cs2)|> γ – β
restart

Signature = (z, c)

Verify(z, c, μ)

Check that |z| ≤ γ – β
and

c=H(high(Az - ct) , μ)

Signing and Verification

Needed for security

Correct because high(Ay) = high(Az - ct)

As1+s2=t0+bt1

Sign(μ)

y Coefficients in [-γ, γ]
c := H(high(Ay), μ)
z := y + cs1

If |z| > γ – β or |low(Ay - cs2)|> γ – β
restart

Signature = (z, c)

Verify(z, c, μ)

Check that |z| ≤ γ – β
and

c=H(high(Az - cbt1) , μ)

Az - ct + ct0

Want high(Ay) = high(Az - ct) = high(Az - ct + ct0)
Give out “carries” caused by ct0 as hints

Removing Low-Order PK bits

Dilithium
(high-level overview)

As1+s2=t0+bt1
Sign(μ)

y Coefficients in [-γ, γ]
c := H(high(Ay), μ)
z := y + cs1

If |z| > γ – β or |low(Ay - cs2)|> γ – β
restart

Create carry bit hint vector h
Signature = (z, h, c)

Verify(z, c, μ)

Check that |z| ≤ γ – β
and

c=H(high(h “+” Az - cbt1) , μ)

high(Ay)
Hint h
• adds 100 – 200 bytes to the signature
• Saves ≈ 2KB in the public key

[Lyu ‘09]
“Fiat-Shamir with Aborts”

Digital Signature

[GLP ‘12]
[BG ‘14], TESLA

Signature Compression

Dilithium
PK: 1.5KB
Sig: 2.7KB

[HHPSW ‘03]
Use NTRU trapdoor for

Signatures

[GPV ‘08]
Made it Secure via
Gaussian Sampling

[DP ‘16] Made it Efficient

FALCON
BLISS [DDLL ‘13]

Bimodal Gaussian
Sampling

[Lyu ‘12]
Gaussian Rejection

Sampling
SIS + LWE Based

Based on NTRU
Uses Discrete Gaussian Sampling

Based on (Module-) LWE / SIS
Uses Uniform Sampling

Additionally useful for IBE Additionally useful for ZK-Proofs

Signature Size

Digital Signature
Overview

(All are Zero-Knowledge in the QROM)

Hash-and-Sign
[HHPSW] [GVP]… FALCON

FALCON

42

a ey z

Small coefficients

z=H(message)

Signer has a “trapdoor” that allows him to find short
y,e for any z

Signing does not leak anything about the trapdoor

[Lyu ‘09]
“Fiat-Shamir with Aborts”

Digital Signature

[GLP ‘12]
[BG ‘14], TESLA

Signature Compression

Dilithium
PK: 1.5KB
Sig: 2.7KB

[HHPSW ‘03]
Use NTRU trapdoor for

Signatures

[GPV ‘08]
Made it Secure via
Gaussian Sampling

[DP ‘16] Made it Efficient

FALCON
PK: 0.900 / 1.8 KB
Sig: 0.6 / 1.2 KB

BLISS [DDLL ‘13]
Bimodal Gaussian

Sampling

[Lyu ‘12]
Gaussian Rejection

Sampling
SIS + LWE Based

Based on NTRU
Uses Discrete Gaussian Sampling

Based on (Module-) LWE / SIS
Uses Uniform Sampling

Additionally useful for IBE Additionally useful for ZK-Proofs

Signature Size

Digital Signature
Overview

(All are Zero-Knowledge in the QROM)

Personal PQ-Recommendations

• If you want minimal assumptions:
• Encryption / Key Exchange: Frodo (or something like it

based on LWE)

• Signature: SPHINCS (or something like it using Merkle
trees)

• If you care about efficiency:
• Encryption / Key Exchange: Kyber (or some other 1KB

equivalent)

• Signature: Dilithium

Lattice Problems

Leads to the smallest:

• pk + ciphertext for encryption (except for
isogeny-based crypto, but lattices are much
faster right now)

• pk + signature for digital signatures

The most analyzed post-quantum assumption
(against classical and quantum algorithms)

• Lovasz, Lenstra H., Lenstra A., Babai, Schnorr,
Coppersmith, Shamir, Regev, Shor, etc. all worked
on lattice algorithms or attacks against some lattice
cryptoscheme

• No breakthrough novel techniques since LLL

• Cryptanalysis using known techniques is believed to
be approaching a lower bound

Lattice Problems

Performance Comparisons

PK Size Cipher
Size

KeyGen
Cycles

Enc.
Cycles

Dec.
Cycles

Frodo 11 KB 11 KB 1200 K 1800 K 1800 K

Kyber 1.1 KB 1.2 KB 85 K 110 K 110 K

PK Size Sig. Size Sign Cycles Verify Cycles

SPHINCS 1 KB 40 KB 50,000 K 1,500 K

Dilithium 1.5 KB 2.7 KB 500 K 175 K

Action Recommendations

• If you need post-quantum crypto now, don’t wait for NIST
standards

• Many proposals are just small variants of well-studied
problems (no breakthrough ideas in lattice crypto)

• Pick something and use it in tandem with current crypto

• Europe can create its own set of standards in under a year

“The enemy of a good plan is the dream of a perfect plan”

Thank You.

