

Protocol Integration and Implementation Problems

Bringing PQC into practice

Stefan-Lukas Gazdag@genua.eu>

5th ENISA/FORTH Summer School, 27th of September 2018

Content

Introduction

The Challenges

Real-World Example: IKEv2

Real-World Example: Hash-Based Signatures

Anecdote

Anecdote

How troublesome is it to integrate quantum-safe algorithms into protocols and applications and what time will it take to so?

Anecdote

How troublesome is it to integrate quantum-safe algorithms into protocols and applications and what time will it take to so?

I'm not really into that topic but I guess it should be fairly easy. I assume that protocols are designed in a modular way so you simply got to exchange algorithms. Therefore it shouldn't take too much effort.

Protocols and Implementations

A little glossary for this presentation:

- Protocols describe how to communicate and how to handle data.
- Implementations are software instantiations of protocols.
- -- *Libraries* provide functionality for other software.

Widespread communication (Internet) is a laboratory experiment gone wild.

Widespread communication (Internet) is a laboratory experiment gone wild.

A lot of old technology mixed with new / updated protocols.

Widespread communication (Internet) is a laboratory experiment gone wild.

A lot of old technology mixed with new / updated protocols.

A standard or documentation is more like guidelines rather than rules.

Security-by-design remains a dream.

Security-by-design remains a dream.

It's got to work first, then we can start thinking about security.

Compatibility!!1!!eleven!!

Compatibility!!1!!eleven!!

Optimization vs. modularity

Use Cases (not exhaustive)

- Digital signatures
 - -- Software updates / code signing
 - E-mail signatures
- -- Secure communication
 - -- Websites (online banking, ...)
 - Remote work

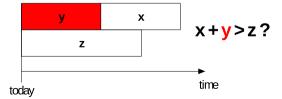
- Securing data
 - Passports / IDs
 - Health data
 - Payment data

...

Tempus fugit

How soon do we need to worry? (Michele Mosca, University of Waterloo)

- -- How long do you need encryption to be secure? (x years)
- How much time will it take to re-tool the existing infrastructure with large-scale quantum-safe solution? (y years)
- -- How long will it take for a large-scale quantum computer to be built (or for any other relevant advance)? (z years)



Tempus fugit

How soon do we need to worry? (Michele Mosca, University of Waterloo)

- How long do you need encryption to be secure? (x years)
- -- How much time will it take to re-tool the existing infrastructure with large-scale quantum-safe solution? (y years)
- -- How long will it take for a large-scale quantum computer to be built (or for any other relevant advance)? (z years)

The Challenges

Check / To Do list (very high-level)

- Academic research
 - Building schemes
 - Optimization
 - Cryptanalysis, ...
- Standardization
- Practical Experience (secure usage, side channels, ...)
- Guidelines
- Integration in protocols
- Integration in software / libraries
- Widespread use

Who wants to join the conversation?

- Academia
- Agencies
- -- Implementors / manufacturers
- Users / companies
- -- Standardization stakeholders
- Patent trolls

Data size and timing demands

- -- Constraints in protocols
- Limitations in implementations
- Often depends on use case
- Sometimes depends on user requirements

Brave New World

- Security Proofs / Quantum Setting
- New application
- Starting out with practical experience

Complexity

- Quite often implementors and users are no experts in cryptography
- Correct use of cryptographic schemes isn't trivial and failures may not be obvious

Debates on principles

- Are new crypto schemes necessary?
 (Meaning any new scheme. Why use SHA-3?)
- Crypto agility:
 - Who's gonna test it?
 - -- Again: Who needs it?
 - It's all just overhead...

Real-World Example: IKEv2

Virtual Private Network: IPsec using IKEv2

Internet Protocol Security (IPsec)

- Suite for secure communication
- A secure *tunnel* to send data through
- Symmetric crypto only

Virtual Private Network: IPsec using IKEv2

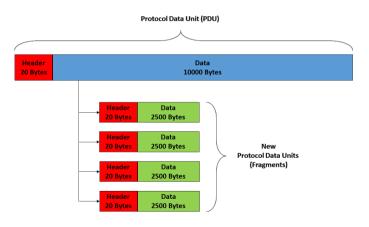
Internet Protocol Security (IPsec)

- Suite for secure communication
- A secure tunnel to send data through
- Symmetric crypto only

Internet Key Exchange Version 2 (IKEv2)

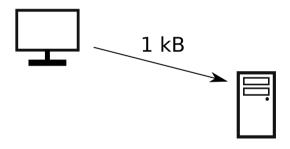
- Key Exchange Protocol
- Diffie-Hellman key exchange
- Authentication

Maximum Transmission Unit


Maximum data size (frame) to send data from machine to machine until you reach the actual recevier.

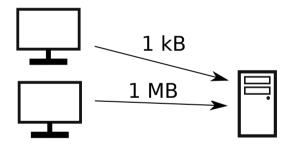
Imagine a machine on the way to your destination that is so old, it can't handle forwarding a single packet that is too big with no alternative route.

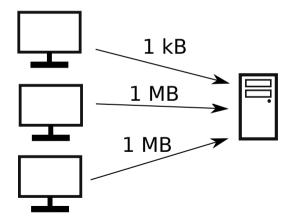
Fragmentation

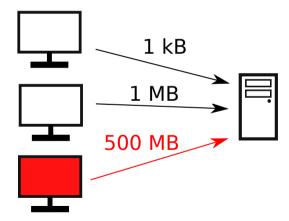

Fragmentation

Important feature to split big data in suitable smaller chunks

- -- IP fragmentation avoided in practice
- -- Some boxes drop fragmented packets
 - \Rightarrow Fragmentation handled by higher protocols
- -- (Initial) Packets need to fit the MTU







Approaches

Classic IKEv2

Approaches

Hybrid Key Exchange (draft-tjhai-ipsecme-hybrid-qske-ikev2), e.g.:

IKE_SA_INIT	
IKE_SA_INIT	
IKE_SA_INIT	
IKE_SA_INIT	
IKE_AUTH	
IKE_AUTH	

Approaches

Auxiliary Exchange (draft-smyslov-ipsecme-ikev2-aux)

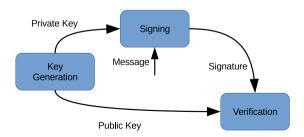
IKE_SA_INIT	_
IKE_SA_INIT	
IKE_AUX	
IKE_AUX	_
IKE_AUTH	
IKE_AUTH	_

IKEv3

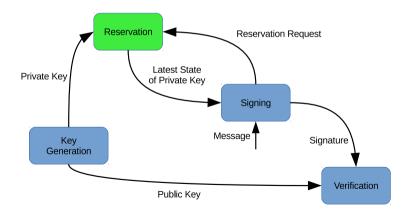
I like IKEv3

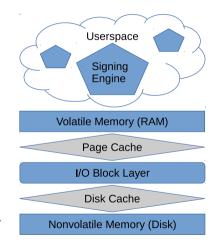
Real-World example: Hash-Based Signatures

Stateful Hash-Based Signatures


Some hash-based schemes have a state.

- Secret key becomes critical resource!
- -- Copies of the key may leak old state!


Classical Signatures


Reservation Approach

Writing the key

Consequences

- Software was never expected to support this
 - \Rightarrow Software has to be altered / updated
- -- Key management required
 - ⇒ totally different approach and security anchor necessary
- Each different system / architecture may have different requirements
- Different approaches for different scenarios

Conclusion

- Integration of PQC in protocols and software is not trivial

Conclusion

- Integration of PQC in protocols and software is not trivial
- We can handle that!

Conclusion

- Integration of PQC in protocols and software is not trivial
- We can handle that!
- But we need:
 - More experience
 - The will to change the status-quo
 - Time (also meaning effort and money)

Questions?

Stefan-Lukas_Gazdag@genua.eu

