
Code-based Cryptography
a Hands-On Introduction

Daniel Loebenberger
<daniel_loebenberger@genua.de>

Ηράκλειο, September 27, 2018



Code-based Cryptography

Post-Quantum Cryptography
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Code-based Cryptography

Coding theory

Dating back to Claude Shannon in 1948
Goal is to protect a message sent over a noisy channel
Typically, this is achieved by adding redundancy
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Code-based Cryptography

Public key Cryptography

We need to specify three algorithms:
Key Generation: Create a private and a public key
Encryption of a message using the public key
Decryption of a ciphertext using the private key

Security: It is not possible to decrypt a ciphertext without the private key.
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Code-based Cryptography
Linear Codes

Basic Definitions

Definition (Linear Code)
A linear (n, k, d)-code C over a finite field F is a
k-dimensional subspace of the vector space Fn with
minimum distance d = minx 6=y∈C dist(x , y), where dist is the
Hamming-distance.

Theorem
A linear (n, k, d)-code can correct up to t =

⌊d−1
2

⌋
errors.
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Code-based Cryptography
Linear Codes

Basic Definitions

Definition (Generator Matrix)
The matrix G ∈ Fk×n is a generator matrix for the
(n, k, d)-code C if C = 〈G〉, i.e. the rows of G span C.

Definition (Encoding)
For a message m ∈ Fk , define its encoding as c = mG ∈ Fn.
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Code-based Cryptography
Linear Codes

Basic Definitions

Problem (Decoding problem)
Given x ∈ Fn find c ∈ C, where dist(x , c) is minimal. If
x = c + e and e is a vector of weight at most t then x is
uniquely determined.

Theorem
The (general) decoding problem is NP-hard.
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Code-based Cryptography
Linear Codes

Encoding/Decoding: Example

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1



H =

1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1



G ∈ F4×7
2 generator matrix for code C

, H ∈ F3×7
2 parity check matrix : GHt = 0

m =
[
0 1 0 1

]
=⇒ c = mG =

[
0 1 0 1 1 1 0

]
cHt = 0, i.e. c ∈ C

One-bit error e =
[
0 0 0 1 0 0 0

]
=⇒ x = c + e =

[
0 1 0 0 1 1 0

]
Then: xHt = cHt + eHt = eHt =

[
1 0 1

]
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Encoding/Decoding: Example

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 H =

1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1


G ∈ F4×7

2 generator matrix for code C, H ∈ F3×7
2 parity check matrix : GHt = 0

m =
[
0 1 0 1

]
=⇒ c = mG =

[
0 1 0 1 1 1 0

]
cHt = 0, i.e. c ∈ C

One-bit error e =
[
0 0 0 1 0 0 0

]
=⇒ x = c + e =

[
0 1 0 0 1 1 0

]

Then: xHt = cHt + eHt = eHt =
[
1 0 1

]
How to use this for decoding?
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Decoding idea: run over all possible errors e, compute eHt and compare to xHt . 8



Code-based Cryptography
Classic McEliece

Content

Linear Codes

Classic McEliece

Optimizations

Conclusion

9



Code-based Cryptography
Classic McEliece

Basic idea

The general decoding problem is a hard problem

However, there are certain codes with efficient decoding
One example are binary Goppa codes
“Disguise” such a code
Use this information as a trapdoor!
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Code-based Cryptography
Classic McEliece

Specification (I)

Key Generation

Secret generator matrix G ∈ Fk×n
2 of an easily decodeable (n, k, d)-code C = 〈G〉

Secret random invertible matrix S ∈ Fk×k
2

Secret random permutation matrix P ∈ Fn×n
2

Compute public G ′ = SGP .

Heuristically, the matrix G ′ behaves like a uniformly selected matrix,
i.e. C′ = 〈G ′〉 is hard to decode.
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Code-based Cryptography
Classic McEliece

Specification (II)

Encryption of m ∈ Fk
2

Choose e ∈ Fn
2 of weight t

return x = mG ′ + e

Decryption of x ∈ Fn
2

Compute y = xP−1 = (mS)G + eP−1

Decode y , obtaining (mS)G
Recover m′ = mS
return m = m′S−1

Both operations are comparatively efficient!
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Code-based Cryptography
Classic McEliece

Encryption: Example

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 S =


0 1 1 1
1 1 0 1
1 1 0 0
1 1 1 1

 P =



0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0



Public G ′ = SGP =


1 1 0 1 0 0 1
0 1 0 0 1 0 1
1 1 0 0 1 1 0
1 1 1 1 1 1 1


Message m =

[
0 1 0 1

]
=⇒ c = mG ′ =

[
1 0 1 1 0 1 0

]
One-bit error e =

[
0 0 0 1 0 0 0

]
=⇒ x = c + e =

[
1 0 1 0 0 1 0

]

13



Code-based Cryptography
Classic McEliece

Encryption: Example

Public G ′ = SGP =


1 1 0 1 0 0 1
0 1 0 0 1 0 1
1 1 0 0 1 1 0
1 1 1 1 1 1 1



Message m =
[
0 1 0 1

]
=⇒ c = mG ′ =

[
1 0 1 1 0 1 0

]
One-bit error e =

[
0 0 0 1 0 0 0

]
=⇒ x = c + e =

[
1 0 1 0 0 1 0

]

13



Code-based Cryptography
Classic McEliece

Encryption: Example

Public G ′ = SGP =


1 1 0 1 0 0 1
0 1 0 0 1 0 1
1 1 0 0 1 1 0
1 1 1 1 1 1 1


Message m =

[
0 1 0 1

]
=⇒ c = mG ′ =

[
1 0 1 1 0 1 0

]
One-bit error e =

[
0 0 0 1 0 0 0

]
=⇒ x = c + e =

[
1 0 1 0 0 1 0

]

13



Code-based Cryptography
Classic McEliece

Decryption: Example

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 S =


0 1 1 1
1 1 0 1
1 1 0 0
1 1 1 1

 P =



0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0



Receive x =
[
1 0 1 0 0 1 0

]
, compute y = xP−1 =

[
0 0 0 0 1 1 1

]
Use decoding algorithm for G, giving message m′ = mS =

[
0 0 1 0

]
m′S−1 = m =

[
0 1 0 1

]

14



Code-based Cryptography
Classic McEliece

Decryption: Example

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 S−1 =


1 0 0 1
1 0 1 1
0 1 0 1
0 1 1 0

 P−1 =



0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0



Receive x =
[
1 0 1 0 0 1 0

]
, compute y = xP−1 =

[
0 0 0 0 1 1 1

]
Use decoding algorithm for G, giving message m′ = mS =

[
0 0 1 0

]
m′S−1 = m =

[
0 1 0 1

]

14



Code-based Cryptography
Classic McEliece

Decryption: Example

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 S−1 =


1 0 0 1
1 0 1 1
0 1 0 1
0 1 1 0

 P−1 =



0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0


Receive x =

[
1 0 1 0 0 1 0

]
, compute y = xP−1 =

[
0 0 0 0 1 1 1

]

Use decoding algorithm for G, giving message m′ = mS =
[
0 0 1 0

]
m′S−1 = m =

[
0 1 0 1

]

14



Code-based Cryptography
Classic McEliece

Decryption: Example

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 S−1 =


1 0 0 1
1 0 1 1
0 1 0 1
0 1 1 0

 P−1 =



0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0


Receive x =

[
1 0 1 0 0 1 0

]
, compute y = xP−1 =

[
0 0 0 0 1 1 1

]
Use decoding algorithm for G, giving message m′ = mS =

[
0 0 1 0

]
m′S−1 = m =

[
0 1 0 1

]
14



Code-based Cryptography
Classic McEliece

Security (classical)

McEliece Problem
Given a McEliece public key G ′ ∈ Fk×n

2 and a ciphertext
x ∈ Fn

2, find (the unique) m ∈ Fk
2 , s.t. dist(mG ′, x) = t

Fact
If you can solve the general decoding problem, then you can
solve the McEliece problem.

However, the converse is not true, since C′ = 〈G ′〉 is not a random code,
but a disguised binary Goppa code!
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Code-based Cryptography
Classic McEliece

Security (post-quantum)

Grover's algorithm
A quantum-computer can search an unordered set of size l
in time O(

√
l).

Theorem
One can apply Grover’s algorithm to solve the general
decoding problem. This gives (roughly) a quadratic speedup.

Runtime still exponential! Wide believe: This is all of the speedup a
quantum-computer provides.
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Code-based Cryptography
Classic McEliece

Parameter Sets

From the NIST proposal by Bernstein et al., Nov 2017:

kem/mceliece6960119
k = 5413, n = 6960, t = 119

Approximate parameter sizes:
Plaintext: 677B, ciphertext: 870B
Public key: 4.5MB, secret key: 13.75MB

kem/mceliece8192128
k = 6528, n = 8192, t = 128

Approximate parameter sizes:
Plaintext: 870B, ciphertext: 1024B
Public key: 6.4MB, secret key: 19.45MB

Expectedly, both parameter sets fulfill the NIST requirements for an
IND-CCA2 KEM, category 5, i.e. a security level of 256 bit.
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Code-based Cryptography
Classic McEliece

McEliece: Conclusion

The security of the McEliece cryptosystem is convincing.
It comes, however, at the cost of large key-sizes.
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Code-based Cryptography
Optimizations

Reducing the Key-Sizes
Opimization possibilities not affecting security:

If k > n − k, rewrite using the parity check matrix H ∈ F(n−k)×n
2

G =

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 =⇒ H =

[
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

]

Store the permutation P in tuple representation!

P =


0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0

 =⇒ P = (7, 2, 6, 3, 1, 5, 4)
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0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0

 =⇒ P = (7, 2, 6, 3, 1, 5, 4)
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Code-based Cryptography
Optimizations

Reducing the Key-Sizes: Effect

kem/mceliece6960119
k = 5413, n = 6960, t = 119

Public key: 4.5MB ⇒ 1.3MB
Secret key: 13.75MB ⇒ 4.8MB

kem/mceliece8192128
k = 6528, n = 8192, t = 128

Public key: 6.4MB ⇒ 1.6MB
Secret key: 19.45MB ⇒ 6.7MB

Even more reductions possible, c.f. NIST submission on classic McEliece!
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Code-based Cryptography
Optimizations

The Code-Based NIST Submissions

BIG QUAKE
BIKE
Classic McEliece
DAGS
Edon-K (withdrawn)
HQC
LAKE

LEDAkem
LEDApkc
Lepton
LOCKER
McNie
NTS-KEM
Ouroboros-R

pqsigRM
QC-MDPC KEM
RaCoSS
Ramstake;
RankSign (withdrawn)
RLCE-KEM
RQC
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Code-based Cryptography
Optimizations

The Code-Based NIST Submissions

QC-MDPC codes
Binary Goppa codes
Quasi-Cyclic codes
BCH codes
Rank Metric codes
Rank Quasi-Cyclic codes
Random Linear codes

QC-LDPC codes

Quasi-Dyadic Gen. Srivastava codes

LRPC codes

Ideal-LRPC codes

Punctured Reed-Muller codes

Quasi-cyclic Goppa codes
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Code-based Cryptography
Optimizations

Security Considerations

Several good proposals
Most aim on the goal of having much smaller key-sizes
Security based on the problem of decoding special codes
Further cryptanalysis necessary!

We live in exciting times :-)
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Code-based Cryptography
Conclusion

Summary

McEliece is well studied and appears to be secure…
…even in a post-quantum setting
This comes at cost of large key-sizes

Most NIST submissions try to address this issue by
using special classes of codes
Their decoding problem is much less analyzed

The study of this tradeoff will probably continue over the next years.
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Code-based Cryptography
Conclusion

Further questions?
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