

Code-based Cryptography

a Hands-On Introduction

Daniel Loebenberger <daniel_loebenberger@genua.de>

Ηράκλειο, September 27, 2018

Post-Quantum Cryptography

Various flavours:

- Lattice-based cryptography
- Hash-based cryptography
- Code-based cryptography
- •• Further techniques (e.g. multivariate, isogeny-based, ...)

Post-Quantum Cryptography

Various flavours:

- Lattice-based cryptography
- Hash-based cryptography
- Code-based cryptography
- •• Further techniques (e.g. multivariate, isogeny-based, ...)

Servis V Provide A Bundesdruckerei Company

Coding theory

- Dating back to Claude Shannon in 1948
- -- Goal is to protect a message sent over a noisy channel
- -- Typically, this is achieved by adding redundancy

$$m \xrightarrow{\text{encode}} c \xrightarrow{\text{+error e}} x = c + e \xrightarrow{\text{decode}} c' \xrightarrow{\text{recover}} m'$$

Servia Values durate de la company

Public key Cryptography

We need to specify three algorithms:

- •• Key Generation: Create a private and a public key
- •• Encryption of a message using the public key
- Decryption of a ciphertext using the private key

Security: It is not possible to decrypt a ciphertext without the private key.

Content

- Linear Codes
- Classic McEliece
- Optimizations
- Conclusion

Content

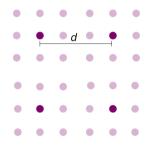
- Linear Codes
- Classic McEliece
- Optimizations
- -- Conclusion

Senia V Bundesdruckerei Company

Basic Definitions

Definition (Linear Code)

A linear (n, k, d)-code C over a finite field \mathbb{F} is a *k*-dimensional subspace of the vector space \mathbb{F}^n with minimum distance $d = \min_{x \neq y \in C} \operatorname{dist}(x, y)$, where dist is the Hamming-distance.



Senja A Bundesdruckerei Company

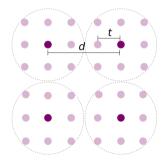
Basic Definitions

Definition (Linear Code)

A linear (n, k, d)-code C over a finite field \mathbb{F} is a *k*-dimensional subspace of the vector space \mathbb{F}^n with minimum distance $d = \min_{x \neq y \in C} \operatorname{dist}(x, y)$, where dist is the Hamming-distance.

Theorem

A linear (n, k, d)-code can correct up to $t = \lfloor \frac{d-1}{2} \rfloor$ errors.



Senja v Bundesdruckerei

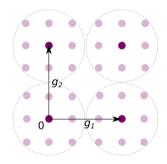
Basic Definitions

Definition (Generator Matrix)

The matrix $G \in \mathbb{F}^{k \times n}$ is a generator matrix for the (n, k, d)-code C if $C = \langle G \rangle$, i.e. the rows of G span C.

Definition (Encoding)

For a message $m \in \mathbb{F}^k$, define its *encoding* as $c = mG \in \mathbb{F}^n$.

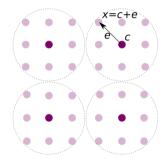


Senja V Bundesdruckerei

Basic Definitions

Problem (Decoding problem)

Given $x \in \mathbb{F}^n$ find $c \in C$, where dist(x, c) is minimal. If x = c + e and e is a vector of weight at most t then x is uniquely determined.



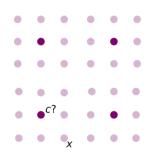
Basic Definitions

Problem (Decoding problem)

Given $x \in \mathbb{F}^n$ find $c \in C$, where dist(x, c) is minimal. If x = c + e and e is a vector of weight at most t then x is uniquely determined.

Theorem

The (general) decoding problem is \mathcal{NP} -hard.



Encoding/Decoding: Example

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

 $\mathcal{G} \in \mathbb{F}_2^{4 imes 7}$ generator matrix for code \mathcal{C}

Encoding/Decoding: Example

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \qquad H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Servia V Bundesdruckerei Company

Encoding/Decoding: Example

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \qquad H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$m = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \Longrightarrow c = mG =$$

Servia V Bundesdruckerei Company

Encoding/Decoding: Example

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \qquad H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$m = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \Longrightarrow c = mG = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
$$cH^{t} =$$

Encoding/Decoding: Example

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \qquad H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$m = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \Longrightarrow c = mG = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
$$cH^{t} = 0, \text{ i.e. } c \in C$$

Encoding/Decoding: Example

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \qquad H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

 $\mathcal{G} \in \mathbb{F}_2^{4 imes 7}$ generator matrix for code \mathcal{C} , $\mathcal{H} \in \mathbb{F}_2^{3 imes 7}$ parity check matrix: $\mathcal{GH}^t = 0$

$$m = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \Longrightarrow c = mG = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
$$cH^{t} = 0, \text{ i.e. } c \in C$$

One-bit error $e = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \Longrightarrow x = c + e =$

Encoding/Decoding: Example

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \qquad H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

 $\mathcal{G} \in \mathbb{F}_2^{4 imes 7}$ generator matrix for code \mathcal{C} , $\mathcal{H} \in \mathbb{F}_2^{3 imes 7}$ parity check matrix: $\mathcal{GH}^t = 0$

$$m = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \Longrightarrow c = mG = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
$$cH^t = 0, \text{ i.e. } c \in C$$

One-bit error $e = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \implies x = c + e = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$

Encoding/Decoding: Example

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \qquad H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

 $\mathcal{G} \in \mathbb{F}_2^{4 imes 7}$ generator matrix for code \mathcal{C} , $\mathcal{H} \in \mathbb{F}_2^{3 imes 7}$ parity check matrix: $\mathcal{GH}^t = 0$

$$m = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \Longrightarrow c = mG = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
$$cH^{t} = 0, \text{ i.e. } c \in C$$

One-bit error $e = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix} \implies x = c + e = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$ Then: $xH^t = cH^t + eH^t = eH^t = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$

Decoding idea: run over all possible errors e, compute eH^t and compare to xH^t .

Content

•• Linear Codes

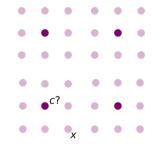
Classic McEliece

Optimizations

-- Conclusion

Basic idea

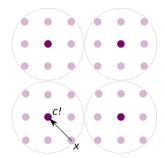
-- The general decoding problem is a hard problem



Senja v Bundesdruckerei

Basic idea

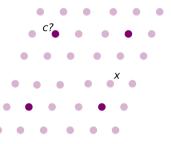
- -- The general decoding problem is a hard problem
- -- However, there are certain codes with efficient decoding
- One example are binary Goppa codes



Senja ^ABundesdruckerei Company

Basic idea

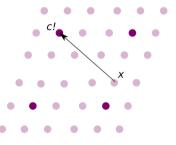
- -- The general decoding problem is a hard problem
- -- However, there are certain codes with efficient decoding
- One example are binary Goppa codes
- •• "Disguise" such a code



Servia V Bundesdruckerei Company

Basic idea

- -- The general decoding problem is a hard problem
- -- However, there are certain codes with efficient decoding
- One example are binary Goppa codes
- •• "Disguise" such a code
- •• Use this information as a trapdoor!



Servis V Provide A Bundesdruckerei

Specification (I)

Key Generation

- Secret generator matrix $G\in \mathbb{F}_2^{k imes n}$ of an easily decodeable (n,k,d)-code $\mathcal{C}=\langle G
 angle$
- Secret random invertible matrix $S \in \mathbb{F}_2^{k imes k}$
- -- Secret random permutation matrix $P \in \mathbb{F}_2^{n imes n}$

Compute public G' = SGP.

Senja v Bundesdruckerei

Specification (I)

Key Generation

- Secret generator matrix $G\in \mathbb{F}_2^{k imes n}$ of an easily decodeable (n,k,d)-code $\mathcal{C}=\langle G
 angle$
- Secret random invertible matrix $S \in \mathbb{F}_2^{k imes k}$
- -- Secret random permutation matrix $P \in \mathbb{F}_2^{n imes n}$

Compute public G' = SGP.

Heuristically, the matrix G' behaves like a uniformly selected matrix, i.e. $\mathcal{C}'=\langle G'\rangle$ is hard to decode.

Specification (II)

Encryption of $m \in \mathbb{F}_2^k$

- •• Choose $e \in \mathbb{F}_2^n$ of weight t
- •• return x = mG' + e

A Bundesdruckerei Company

Specification (II)

Encryption of $m \in \mathbb{F}_2^k$

- •• Choose $e \in \mathbb{F}_2^n$ of weight t
- •• return x = mG' + e

Decryption of $x \in \mathbb{F}_2^n$

- •• Compute $y = xP^{-1} = (mS)G + eP^{-1}$
- •• Decode y, obtaining (mS)G
- •• Recover m' = mS
- •• return $m = m'S^{-1}$

RUIA A Bundesdruckerei Company

Specification (II)

Encryption of $m \in \mathbb{F}_2^k$

- •• Choose $e \in \mathbb{F}_2^n$ of weight t
- •• return x = mG' + e

Decryption of $x \in \mathbb{F}_2^n$

- •• Compute $y = xP^{-1} = (mS)G + eP^{-1}$
- •• Decode y, obtaining (mS)G
- •• Recover m' = mS

•• return
$$m = m'S^{-1}$$

Both operations are comparatively efficient!

Encryption: Example

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \quad S = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \quad P = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Encryption: Example

Public
$$G' = SGP = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Encryption: Example

Public
$$G' = SGP = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Message
$$m = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \Longrightarrow c = mG' = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

One-bit error $e = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \Longrightarrow x = c + e = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$

Servia Pandesdruckerei Company

Decryption: Example

Servis Provide Amagedruckerei

Decryption: Example

Servia Values A Bundesdruckerei Company

Decryption: Example

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \quad S^{-1} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \quad P^{-1} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Receive $x = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$, compute $y = xP^{-1} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$

Decryption: Example

Receive $x = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$, compute $y = xP^{-1} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$

Use decoding algorithm for G, giving message $m' = mS = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$

$$m'S^{-1} = m = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$$

A Bundesdruckere Company

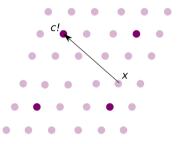
Security (classical)

McEliece Problem

Given a McEliece public key $G' \in \mathbb{F}_2^{k \times n}$ and a ciphertext $x \in \mathbb{F}_2^n$, find (the unique) $m \in \mathbb{F}_2^k$, s.t. dist(mG', x) = t

Fact

If you can solve the general decoding problem, then you can solve the McEliece problem.



Bundesdruckerei Company

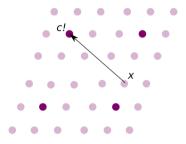
Security (classical)

McEliece Problem

Given a McEliece public key $G' \in \mathbb{F}_2^{k \times n}$ and a ciphertext $x \in \mathbb{F}_2^n$, find (the unique) $m \in \mathbb{F}_2^k$, s.t. dist(mG', x) = t

Fact

If you can solve the general decoding problem, then you can solve the McEliece problem.



However, the converse is not true, since $\mathcal{C}' = \langle G' \rangle$ is *not* a random code, but a disguised binary Goppa code!

A Bundesdruckerei Company

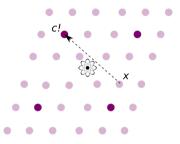
Security (post-quantum)

Grover's algorithm

A quantum-computer can search an unordered set of size l in time $\mathcal{O}(\sqrt{l}).$

Theorem

One can apply Grover's algorithm to solve the general decoding problem. This gives (roughly) a quadratic speedup.



JJA A Bundesdruckerei Company

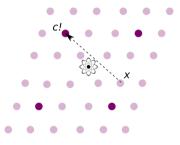
Security (post-quantum)

Grover's algorithm

A quantum-computer can search an unordered set of size l in time $\mathcal{O}(\sqrt{l}).$

Theorem

One can apply Grover's algorithm to solve the general decoding problem. This gives (roughly) a quadratic speedup.



Runtime still exponential! Wide believe: This is all of the speedup a quantum-computer provides.

Senja V Bundesdruckerei

Parameter Sets

From the NIST proposal by Bernstein et al., Nov 2017:

kem/mceliece6960119

k = 5413, n = 6960, t = 119

kem/mceliece8192128 k = 6528, n = 8192, t = 128

Senia V Bundesdruckerei Company

Parameter Sets

From the NIST proposal by Bernstein et al., Nov 2017:

kem/mceliece6960119

k = 5413, n = 6960, t = 119

Approximate parameter sizes: Plaintext: 677B, ciphertext: 870B Public key: 4.5MB, secret key: 13.75MB kem/mceliece8192128 k = 6528, n = 8192, t = 128

Approximate parameter sizes: Plaintext: 870B, ciphertext: 1024B Public key: 6.4MB, secret key: 19.45MB

Senia V Bundesdruckerei Company

Parameter Sets

From the NIST proposal by Bernstein et al., Nov 2017:

kem/mceliece6960119

k = 5413, n = 6960, t = 119

Approximate parameter sizes: Plaintext: 677B, ciphertext: 870B Public key: 4.5MB, secret key: 13.75MB kem/mceliece8192128 k = 6528, n = 8192, t = 128

Approximate parameter sizes: Plaintext: 870B, ciphertext: 1024B Public key: 6.4MB, secret key: 19.45MB

Expectedly, both parameter sets fulfill the NIST requirements for an IND-CCA2 KEM, category 5, i.e. a security level of 256 bit.

McEliece: Conclusion

The security of the McEliece cryptosystem is convincing. It comes, however, at the cost of large key-sizes.

Content

- Linear Codes
- Classic McEliece
- Optimizations
- -- Conclusion

Senia V Bundesdruckerei Company

Reducing the Key-Sizes

Opimization possibilities not affecting security:

••• If k>n-k, rewrite using the parity check matrix $H\in \mathbb{F}_2^{(n-k) imes n}$

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \Longrightarrow H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Sense Variable Company

Reducing the Key-Sizes

Opimization possibilities not affecting security:

••• If k>n-k, rewrite using the parity check matrix $H\in \mathbb{F}_2^{(n-k) imes n}$

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \Longrightarrow H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

•• Store the permutation *P* in tuple representation!

$$P = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \Longrightarrow P = (7, 2, 6, 3, 1, 5, 4)$$

Reducing the Key-Sizes: Effect

kem/mceliece6960119 k = 5413, n = 6960, t = 119

Public key: $4.5MB \Rightarrow 1.3MB$ Secret key: $13.75MB \Rightarrow 4.8MB$ kem/mceliece8192128 k = 6528, n = 8192, t = 128

Public key: $6.4MB \Rightarrow 1.6MB$ Secret key: $19.45MB \Rightarrow 6.7MB$

Reducing the Key-Sizes: Effect

kem/mceliece6960119

k = 5413, n = 6960, t = 119

Public key: $4.5MB \Rightarrow 1.3MB$ Secret key: $13.75MB \Rightarrow 4.8MB$ kem/mceliece8192128 k = 6528, n = 8192, t = 128

Public key: $6.4MB \Rightarrow 1.6MB$ Secret key: $19.45MB \Rightarrow 6.7MB$

Even more reductions possible, c.f. NIST submission on classic McEliece!

The Code-Based NIST Submissions

- •• BIG QUAKE
- BIKE
- Classic McEliece
- •• DAGS
- •• Edon-K (withdrawn)
- -- HQC
- •• LAKE

- LEDAkem
- LEDApkc
- Lepton
- LOCKER
- McNie
- NTS-KEM
- Ouroboros-R

- •• pqsigRM
- •• QC-MDPC KEM
- RaCoSS
- Ramstake;
- -- RankSign (withdrawn)
- RLCE-KEM
- •• RQC

The Code-Based NIST Submissions

- •• QC-MDPC codes
- •• Binary Goppa codes
- •• Quasi-Cyclic codes
- BCH codes
- •• Rank Metric codes
- •• Rank Quasi-Cyclic codes
- •• Random Linear codes

- •• QC-LDPC codes
- •• Quasi-Dyadic Gen. Srivastava codes
- LRPC codes
- Ideal-LRPC codes
- Punctured Reed-Muller codes
- Quasi-cyclic Goppa codes

Senia Version Persona Persona

Security Considerations

- -- Several good proposals
- Most aim on the goal of having much smaller key-sizes
- Security based on the problem of decoding special codes
- •• Further cryptanalysis necessary!

Seria Periode A Bundesdruckerei

Security Considerations

- -- Several good proposals
- Most aim on the goal of having much smaller key-sizes
- Security based on the problem of decoding special codes
- •• Further cryptanalysis necessary!

We live in exciting times :-)

Content

- •• Linear Codes
- Classic McEliece
- Optimizations
- Conclusion

Servia V Bundesdruckerei

Summary

- •• McEliece is well studied and appears to be secure...
- …even in a post-quantum setting
- -- This comes at cost of large key-sizes

Senia V Bundesdruckerei Company

Summary

- •• McEliece is well studied and appears to be secure...
- …even in a post-quantum setting
- This comes at cost of large key-sizes
- Most NIST submissions try to address this issue by using special classes of codes
- -- Their decoding problem is much less analyzed

The study of this tradeoff will probably continue over the next years.

Further questions?

